Author Affiliations
Abstract
1 Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
2 National Key Laboratory of Solid-State Microwave Devices and Circuits, Nanjing 210016, China
3 Nanjing Electronic Devices Institute, Nanjing 210016, China
4 Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
5 Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University Suzhou Campus, Suzhou 215123, China
The technological innovation of thin-film lithium niobate (TFLN) is supplanting the traditional lithium niobate industry and generating a vast array of ultra-compact and low-loss optical waveguide devices, providing an unprecedented prospect for chip-scale integrated optics. Because of its unique strong quadratic nonlinearity, TFLN is widely used to create new coherent light, which significantly promotes all-optical signal processes, especially in terms of speed. Herein, we review recent advances in TFLN, review the thorough optimization strategies of all-optical devices with unique characteristics based on TFLN, and discuss the challenges and perspectives of the developed nonlinear devices.
thin-film lithium niobate second-order nonlinearity nonlinear integrated optics 
Chinese Optics Letters
2023, 21(10): 101901
作者单位
摘要
1 河北北方学院物理系, 河北 张家口 075000
2 河北建筑工程学院机械系, 河北 张家口 075024
提出一种测量平板玻璃中气泡直径的方法。用平行He-Ne激光束照射平板玻璃内的气泡, 在远场产生圆环状干涉条纹。利用气泡远场干涉理论模型, 使用分光仪对平板玻璃外干涉条纹角位置进行测量, 由折射定律换算为平板玻璃内干涉条纹角位置, 进而使用计算软件mathematica计算出气泡直径, 测量结果显示平板玻璃内气泡的形状为椭球。给出了快速测量气泡直径的建议。因为是远场干涉, 对气泡在载物台上方的位置要求不严格。对夫琅和费圆屏衍射条纹的干扰进行了分析, 为平板玻璃内气泡直径测量提供了一种新的方法。
测量与计量 气泡直径 远场干涉 平板玻璃 
中国激光
2009, 36(6): 1508

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!