Jiajun Wang 1†Peishen Li 2Xingqi Zhao 1Zhiyuan Qian 2[ ... ]Jian Zi 1,4,5,6,*
Author Affiliations
Abstract
1 State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, China
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing, China
3 College of Physics, Chongqing University, Chongqing, China
4 Institute for Nanoelectronic devices and Quantum computing, Fudan University, Shanghai, China
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
6 Shanghai Research Center for Quantum Sciences, Shanghai, China
Optical bound states in the continuum (BICs) have recently stimulated a research boom, accompanied by demonstrations of abundant exotic phenomena and applications. With ultrahigh quality (Q) factors, optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space. Besides the high Q factors enabled by the confined properties, many hidden topological characteristics were discovered in optical BICs. Especially in periodic structures with well-defined wave vectors, optical BICs were discovered to carry topological charges in momentum space, underlying many unique physical properties. Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light. BICs have enabled many novel discoveries in light–matter interactions and spin–orbit interactions of light, and BIC applications in lasing and sensing have also been well explored with many advantages. In this paper, we review recent developments of optical BICs in periodic structures, including the physical mechanisms of BICs, explored effects enabled by BICs, and applications of BICs. In the outlook part, we provide a perspective on future developments for BICs.
bound state in the continuum light trapping topological charge polarization vortex momentum space light field manipulation photonic crystal slab nanophotonics 
Photonics Insights
2024, 3(1): R01
钟航 1陈钧 1,*陈骏 1廖俊生 2,**
作者单位
摘要
1 表面物理与化学重点实验室,四川 绵阳 621908
2 中国工程物理研究院材料研究所,四川 绵阳 621907
光学捕获经过近几十年的发展,从光学悬浮到紧密聚焦的单光束光镊再到最近发展的多种类型的光学阱,已经可以捕获包括碳、金属氧化物、花粉、孢子、无机/有机液滴等多种不同类型的粒子,结合拉曼光谱、腔衰荡光谱或激光诱导击穿光谱可以获取悬浮微粒在原生状态下的物理和化学信息,并可以实现受控气氛环境下单粒子的化学反应研究。首先,本文根据微粒的吸光性对空气中微粒的光学捕获力的来源进行了介绍,透明微粒主要受辐射压力的作用,吸光微粒主要受光泳力的作用;然后,根据光学捕获力的不同对单光束、双光束、高斯光束和空心光束等光学捕获设计进行分类介绍;最后,综述了光学捕获与光谱技术结合起来用于单粒子研究的最新进展,并讨论了光学捕获拉曼光谱面临的挑战。
光谱学 光镊 光学捕获 单颗粒 气溶胶 
中国激光
2024, 51(3): 0307303
谭伊玫 1,2徐英莹 1,3张硕 2刘雁飞 2[ ... ]唐鑫 1,*
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 中芯热成科技(北京)有限责任公司,北京 100176
3 中国计量科学研究院,北京 100029
红外探测及成像具有广泛用途,在红外制导、夜视侦察、安防监控及危化品探测等方面发挥了重要作用。现有红外成像焦平面大多由碲镉汞、二类超晶格、锑化铟等块体半导体材料制成,通过倒装键合的方法实现块体材料与硅基读出电路的信号传输。倒装键合对准困难、操作复杂、对设备依赖性较强,难以满足焦平面阵列规模不断增加和像元尺寸不断减小的制备需求。为解决红外焦平面阵列规模提升的瓶颈,采用碲化汞胶体量子点,通过液相旋涂的方法,突破倒装键合限制,实现硅基读出电路直接片上集成。所制备焦平面阵列规模达1280×1024,像元间距为15 µm,80 K工作温度下探测截止波长为4.8 µm,响应非均匀性为9%,有效像元率为99.96%,最低噪声等效温差达30 mK,展现了良好的成像性能。
焦平面阵列成像 胶体量子点 百万像素 捕获型探测器 
激光与光电子学进展
2024, 61(2): 0211027
Author Affiliations
Abstract
1 Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2 Instituto de materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
3 Institute for Advanced Research in Chemical Sciences, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
4 Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Optical nanoparticles are nowadays one of the key elements of photonics. They do not only allow optical imaging of a plethora of systems (from cells to microelectronics), but, in many cases, they also behave as highly sensitive remote sensors. In recent years, it has been demonstrated the success of optical tweezers in isolating and manipulating individual optical nanoparticles. This has opened the door to high resolution single particle scanning and sensing. In this quickly growing field, it is now necessary to sum up what has been achieved so far to identify the appropriate system and experimental set-up required for each application. In this review article we summarize the most relevant results in the field of optical trapping of individual optical nanoparticles. After systematic bibliographic research, we identify the main families of optical nanoparticles in which optical trapping has been demonstrated. For each case, the main advances and applications have been described. Finally, we also include our critical opinion about the future of the field, identifying the challenges that we are facing.
optical trapping optical nanoparticle single particle spectroscopy single particle sensor 
Opto-Electronic Science
2023, 2(9): 230019
作者单位
摘要
武汉理工大学 理学院 物理系, 武汉 430070
为了捕获不同材料、不同尺寸的多微粒串列, 采用界面层腐蚀法制备了双锥角光纤探针, 搭建单光纤光镊系统捕获了酵母菌、二氧化硅和聚苯乙烯等材料的多微粒串列。结果表明, 对于相同材料的微粒, 双锥角探针所能捕获的微粒数量随其尺寸增加而减少, 而对于相同尺寸的微粒, 捕获微粒的数量随材料折射率增加而减少; 通过测量捕获微粒串列时各个微粒的捕获力, 发现串列中离探针尖端越远的微粒其所受捕获力越小, 在外力的作用下远端的微粒将率先逃逸; 理论计算显示当光纤探针的2次锥角超过60°时, 不能捕获2个或2个以上的球形微粒, 该结果和实验观测一致。此研究可应用于精细加工和微纳制造。
激光技术 光纤光镊 界面层腐蚀法 多微粒捕获 光捕获 laser technique optical fiber tweezers interfacial layer etching multiparticle trapping optical trapping 
激光技术
2023, 47(3): 335
Author Affiliations
Abstract
1 Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
2 Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau, France
3 Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
Mechanical forces play an important role in the behaviour of cells, from differentiation to migration and the development of diseases. Optical tweezers provide a quantitative tool to study these forces and must be combined with other tools, such as phase contrast and fluorescence microscopy. Detecting the retro-reflected trap beam is a convenient way to monitor the force applied by optical tweezers, while freeing top access to the sample. Accurate in situ calibration is required especially for single cells close to a surface where viscosity varies rapidly with height. Here, we take advantage of the well contrasted interference rings in the back focal plane of the objective to find the height of a trapped bead above a cover slip. We thus map the viscous drag dependence close to the surface and find agreement between four different measurement techniques for the trap stiffness down to 2 μm above the surface. Combining this detection scheme with phase contrast microscopy, we show that the phase ring in the back focal plane of the objective must be deported in a conjugate plane on the imaging path. This simplifies implementation of optical tweezers in combination with other techniques for biomechanical studies.
Optical tweezers Optical micromanipulation Optical trapping 
Journal of the European Optical Society-Rapid Publications
2023, 19(1): 2023026
谭伊玫 1,2张硕 2罗宇宁 1,2郝群 1[ ... ]唐鑫 1
作者单位
摘要
1 北京理工大学 光电学院,北京 100081
2 中芯热成科技(北京)有限责任公司,北京 101102
中波红外成像在**侦察、遥感测绘、航天航空等领域发挥了重要作用。现有中波红外焦平面主要采用碲镉汞、二类超晶格、锑化铟等块体半导体材料,其性能优异、稳定性高。然而,其复杂的材料制备及倒装键合工艺限制了块体半导体焦平面阵列的批量化制备及低成本应用。胶体量子点作为一种新兴液态半导体材料,具有光谱调控范围“宽”、合成规模“大”、制备成本“低”、以及加工工艺“易”等优势,为新型红外焦平面阵列研发提供了全新的思路。碲化汞量子点采用“热注法”合成,并通过旋涂方法实现与硅基读出电路的直接电学耦合,阵列规模及像元间距为640×512及15 µm。在80 K工作温度下对焦平面阵列进行了性能测试,碲化汞焦平面阵列响应截止波长达到4.6 μm、比探测率为2×1010 Jones、噪声等效温差51.26 mK(F#=2)、响应非均匀性3.42%且有效像元率高达99.99%,展现了较好的成像性能,为非倒装键合体制中波红外成像焦平面的制备提供了新的方案。
红外成像技术 量子点焦平面阵列 捕获型器件 中波红外 热成像 infrared imaging technology quantum-dot focal plane arrays trapping-mode devices mid-wave infrared thermal imaging 
红外与激光工程
2023, 52(7): 20230377
作者单位
摘要
1 暨南大学纳米光子学研究院,广东省纳米光学操控重点实验室,广东 广州 511443
2 仲恺农业工程学院自动化学院,广东 广州 510225
光学操控已被广泛应用于生物医学、物理和材料科学等领域。近年来,锥形光纤光镊由于具有操作灵活、结构紧凑、易于制造等特点,在光学操控领域引起了极大关注。作为一种非侵入式光操控工具,锥形光纤光镊不会对生物组织和活体细胞产生接触式物理损伤,因而可以直接应用于细胞的多维度操控。此外,红外光波对生物组织具有良好的穿透性,这使得锥形光纤光镊在生物及医学领域有着不俗的表现。在这篇综述,笔者总结了锥形光纤光镊在单细胞、多细胞、亚细胞等层面的研究现状,并介绍了其在神经细胞调控方面的最新进展。
生物光学 光纤光学 光纤光镊 光捕获 细胞操控 神经调控 
中国激光
2023, 50(15): 1507302
Author Affiliations
Abstract
1 University of California, Davis, Department of Electrical and Computer Engineering, Davis, California, United States
2 W&WSens Devices, Inc., Los Altos, California, United States
3 University of California, Baskin School of Engineering, Department of Electrical and Computer Engineering, Santa Cruz, California, United States
The photosensitivity of silicon is inherently very low in the visible electromagnetic spectrum, and it drops rapidly beyond 800 nm in near-infrared wavelengths. We have experimentally demonstrated a technique utilizing photon-trapping surface structures to show a prodigious improvement of photoabsorption in 1-μm-thin silicon, surpassing the inherent absorption efficiency of gallium arsenide for a broad spectrum. The photon-trapping structures allow the bending of normally incident light by almost 90 deg to transform into laterally propagating modes along the silicon plane. Consequently, the propagation length of light increases, contributing to more than one order of magnitude improvement in absorption efficiency in photodetectors. This high-absorption phenomenon is explained by finite-difference time-domain analysis, where we show an enhanced photon density of states while substantially reducing the optical group velocity of light compared to silicon without photon-trapping structures, leading to significantly enhanced light–matter interactions. Our simulations also predict an enhanced absorption efficiency of photodetectors designed using 30- and 100-nm silicon thin films that are compatible with CMOS electronics. Despite a very thin absorption layer, such photon-trapping structures can enable high-efficiency and high-speed photodetectors needed in ultrafast computer networks, data communication, and imaging systems, with the potential to revolutionize on-chip logic and optoelectronic integration.
photoabsorption photon trapping group-velocity reduction photodetectors silicon photonics 
Advanced Photonics Nexus
2023, 2(5): 056001
Author Affiliations
Abstract
1 Photonic Integrated Circuits Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Engineering Research Center of Optical Instrument and Systems, Ministry of Education, and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
A kind of optical data storage medium based on electron-trapping materials, Y3Al5O12:Ce3+ fluorescent ceramic, was developed by vacuum sintering technology. The medium shows sufficiently deep traps (1.67 and 0.77 eV). The properties of trap levels were researched by thermoluminescence curves, and the optical storage mechanism based on Ce3+ ion doping was proposed. More importantly, the data can be written-in by 254 nm UV light, and readout by heating (300°C). This work expands the application fields of fluorescent ceramics, and it is expected to promote the development of electron-trapping materials.
electron-trapping materials optical data storage Y3Al5O12 Ce3+ doping 
Chinese Optics Letters
2023, 21(4): 041602

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!