作者单位
摘要
1 中国计量大学材料与化学学院,杭州 300018
2 河北民族师范学院,承德 067000
3 中国计量大学光学与电子科技学院,杭州 300018
近年来,通过光伏辅助电催化(PV-EC)分解水制备“绿氢”成为实现碳中和目标的关键。然而,普通电解水催化剂不能满足PV-EC系统中较高的太阳能到氢能(STH)转换效率的需求。因此,获取价格低廉、低反应过电势的电催化剂材料极为重要。本文选取具有高价态的过渡金属W作为掺杂源,采用一步电沉积方法制备出NiFeW三元金属磷化物。通过一系列的表征发现,NiFeW磷化物电催化剂表现出优异的析氢反应(HER)和析氧反应(OER)活性,且作为双功能电催化剂时,在10 mA/cm2电流密度下W掺杂后样品的过电势降低了51 mV。使用NiFeW磷化物作为双功能电催化剂和太阳能电池(a-Si∶H/a-SiGe∶H/a-SiGe∶H)作为驱动源,PV-EC器件实现了超过7%的理论STH转换效率,对推动太阳能分解水制氢装置的实际应用具有重要意义。
电解水制氢 双功能电催化剂 光伏辅助电催化 太阳能电池 过渡金属磷化物 掺杂 electrocatalytic water splitting for hydrogen evol bifunctional electrocatalyst PV-EC solar cell transition metal phosphide doping 
人工晶体学报
2023, 52(8): 1491
作者单位
摘要
清华大学材料学院激光材料加工研究中心, 北京 100084
自然界中存在大量具有特殊微纳结构的多尺度表面,如荷叶、水稻叶、玫瑰花瓣、壁虎脚趾、鲨鱼皮、蝴蝶翅膀、昆虫复眼等,这些表面具有超疏水、超亲水、结构色、高敏感性、生物相容性等多种神奇功能。如何人工制备出仿生微纳米结构,从而实现师法自然和超越自然的目标,是材料与制造领域的重大课题之一。超快激光加工是灵活制备微纳米结构的可靠手段,但衍射极限制约了其纳米结构制备能力,且制备效率低下。本团队在过去的10多年中,在拓展超快激光微米与纳米结构制备能力以及仿生微纳结构的功能化方面开展了系统研究,发展了一系列超快激光微纳结构制备与双级精确调控新方法,探索了超快激光制备的微纳结构表面在超疏水、高抗反射、高敏感性和生物医学检测等领域的创新应用。超快激光制备形态多样的微纳米结构并实现仿生功能化是一个富有吸引力的研究方向,但仍然面临着诸如突破衍射极限以实现1~100 nm典型纳米结构的制备、功能化微纳结构的设计与制备以及大面积微纳结构的高效制备等挑战。本文为《清华大学建校110周年之光耀清华》专辑而撰写,旨在总结过去、面向未来,与本领域同仁一起交流探讨,共同推进本研究领域的发展。
激光技术 微纳米结构 特殊浸润性表面 抗反射表面 水分解制氢电极 表面增强拉曼散射 
中国激光
2021, 48(15): 1502002
作者单位
摘要
清华大学材料学院激光材料加工研究中心, 北京 100084
相对于使用化石燃料的制氢方式,电解水不存在碳排放,是一种真正绿色环保的制氢技术,对发展氢能源具有重要意义。电解水的能耗和成本都较大,需要使用高效稳定的非贵金属催化剂,以降低过电压。激光具有高效、灵活、非接触、高度可控等优点,近年来已成为制备电解水催化剂的有效工具,但在一体化微纳米结构催化电极的制备方面存在不足之处。本文基于激光微纳制备方法,总结了激光液相合成粉末催化剂和激光制备自支撑微纳米结构催化电极的最新研究进展,并讨论了该领域未来的研究方向。
激光技术 微纳米结构 电解水 析氧反应 析氢反应 
中国激光
2021, 48(2): 0202008

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!