Dawei Yuan 1,2,*Shaojun Wang 3,7Huigang Wei 1Haochen Gu 3,7[ ... ]Jie Zhang 3,4,6,*
Author Affiliations
Abstract
1 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
2 Institute of Frontiers in Astronomy and Astrophysics of Beijing Normal University, Beijing, China
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
4 Key Laboratory for Laser Plasmas (MOE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
5 Department of Astronomy, Beijing Normal University, Beijing, China
6 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
7 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
8 Songshan Lake Materials Laboratory, Dongguan, China
The velocity interferometer system for any reflector (VISAR) coupled with a streaked optical pyrometer (SOP) system is used as a diagnostic tool in inertial confinement fusion (ICF) experiments involving equations of state and shock timing. To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition (DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.
double-cone ignition streaked optical pyrometer velocity interferometer system for any reflector 
High Power Laser Science and Engineering
2024, 12(1): 010000e6
作者单位
摘要
1 福州大学 至诚学院, 福州 350002
2 福州大学 环境与安全工程学院, 福州 350116
利用自主设计和搭建的1 m3矩形泄爆系统, 开展了顶部点火条件下7%~13%浓度范围的甲烷-空气预混气体泄爆实验, 研究甲烷浓度对泄爆过程中火焰演化和内部超压特性的影响规律, 并结合压力时程曲线和火焰演化图像等进行机制分析, 研究结果表明: 浓度对甲烷-空气预混气体的泄爆特性有显著影响, 在特定甲烷浓度下, 容器内部超压出现双峰现象, 在各浓度下均出现压力峰值P1, 而压力峰值P2仅在浓度为9%出现。各浓度均出现的第一压力峰值P1随着浓度的增加呈现先增大后减小的趋势, 而该峰值出现时间的变化趋势却与之相反, 两者均在甲烷浓度10%下取得极值。这一现象主要由初始火焰传播、外部爆炸、亥姆霍兹振荡和泰勒不稳定性等因素综合影响形成。仅在甲烷浓度9%出现由火焰与声波耦合作用诱发产生的声学峰值P2, 该峰值远大于压力峰值P1; 其主要由火焰和声压的相互促进与扰动触发热声耦合作用影响形成。火焰向下传播速度随浓度呈先增加后减小的趋势, 在甲烷浓度10%时达到最大值, 且稍富燃状态下燃烧速度总体较快。
甲烷爆炸 泄爆 顶部点火 火焰演化 methane explosion vented explosion top ignition flame evolution 
爆破
2023, 40(4): 218
Author Affiliations
Abstract
1 Editor-in-Chief, High Power Laser Science and Engineering, Cambridge University Press, Cambridge, UK
2 AWE, Aldermaston, Reading, UK
3 Centre for Inertial Fusion Studies, Blackett Laboratory, Imperial College London, London, UK
4 Editorial Board Member, High Power Laser Science and Engineering, Cambridge University Press, Cambridge, UK
5 Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy
On behalf of all at High Power Laser Science and Engineering we would like to congratulate the team at Lawrence Livermore National Laboratory (LLNL) on demonstrating fusion ignition at the National Ignition Facility. This major scientific achievement was realized on the 5 December 2022 at the LLNL and announced at a press briefing on the 13 December 2022 by the United States Department of Energy’s National Nuclear Security Administration. This was a historic milestone and the culmination of decades of effort.
inertial confinement fusion fusion ignition inertial fusion energy high power lasers 
High Power Laser Science and Engineering
2023, 11(3): 03000e40
Author Affiliations
Abstract
1 Department of Plasma Physics and Fusion Engineering and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China
2 Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion (ICF). However, the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging. In this research, we develop a machine-learning pulse shape designer to achieve high compression density and stable implosion. The facility-specific laser imprint pattern is considered in the optimization, which makes the pulse design more relevant. The designer is applied to the novel double-cone ignition scheme, and simulation shows that the optimized pulse increases the areal density expectation by 16% in one dimension, and the clean-fuel thickness by a factor of four in two dimensions. This pulse shape designer could be a useful tool for direct-drive ICF instability control.
double-cone ignition hydrodynamics instability machine-learning optimization pulse shape optimization 
High Power Laser Science and Engineering
2023, 11(3): 03000e41
作者单位
摘要
1 中国科学技术大学核科学技术学院,安徽 合肥 230026
2 上海交通大学IFSA协同创新中心,上海 200240
针对双锥对撞点火方案实验中的受激布里渊散射过程,发展了一套门控角分辨全口径背向散射诊断系统。设计了光纤阵列,对神光-ⅡU装置打靶伺服反射镜上的散射信号进行收集,利用其时间特性,通过相对测量的方式,获得了角分辨的背向受激布里渊散射能量份额,发现其角分布敏感依赖于激光在球壳表面的辐照模式,为深入研究双锥对撞点火方案中的受激布里渊散射过程提供了可靠的实验结果。
激光光学 双锥对撞点火 受激布里渊散射 角分辨全口径背向散射诊断 
光学学报
2023, 43(11): 1114001
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心,绵阳 621900
2 中国科学院上海光学精密机械研究所,上海 201800
2022年12月13日,美国能源部(DOE)及其下属的国家核安全管理局(NNSA)宣布,劳伦斯利弗莫尔国家实验室(LLNL)利用其建立的国家“点火”装置(NIF),在人类历史上首次实现了聚变产能大于驱动聚变发生的激光能量这一“点火”里程碑,将为美国核**物理规律和效应研究、核**库存管理等提供重要支撑,为未来清洁能源的发展铺平新的道路,并为高能量密度物理研究提供新的手段和平台。本文专访了中国工程物理研究院激光聚变研究中心郑万国研究员,就发布会传递信息、惯性约束聚变(ICF)实现途径及存在难点、激光聚变“点火”历程、未来ICF和惯性聚变能(IFE)发展前景,以及激光晶体在ICF和IFE中重要作用等业界广泛关心的几个问题进行解读,以期为读者提供专业的信息,使大家进一步了解ICF发展趋势和IFE发展前景,并针对相关晶体材料开展基础研究及关键技术攻关,牵引和支撑未来激光聚变驱动装置建设。
聚变“点火” 国家“点火”装置 可控核聚变 惯性约束聚变 聚变能 激光晶体 非线性晶体 fusion “ignition national ignition facility controlled nuclear fusion inertial confinement fusion fusion energy laser crystal nonlinear crystal 
人工晶体学报
2023, 52(1): 1
作者单位
摘要
北京工业大学材料与制造学部, 北京 100124
我国的水泥生产以新型干法水泥窑技术为主, 使用燃料为高挥发分、低灰分的优质烟煤。水泥生产属于高能耗、高排放行业, 控制水泥生产过程能耗、降低碳排放对实现“双碳”目标具有重大意义。燃煤催化剂可以有效地解决水泥生产过程中高能耗、高排放的问题, 近年来引起了广泛的关注。本文结合国内外研究现状, 系统综述了燃煤催化剂的组成与评价方法、催化剂的催化机理、脱硫脱硝型燃煤催化剂的研究和催化剂在工业生产中的应用。研究改进催化剂添加方式, 保证在煤粉中的分散度可以提高催化剂的催化效率, 是推进燃煤催化剂工业化使用的关键之处。
水泥工业 燃煤催化剂 着火温度 燃烧烈度 催化机理 工业应用 cement industry coal combustion catalyst ignition temperature burning intensity catalytic mechanism industry application 
硅酸盐通报
2023, 42(2): 531
作者单位
摘要
1 中国科学技术大学,合肥 230026
2 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
具备高分辨能力(约5 μm)的Kirkpatrick-Baez(KB)显微镜大幅提升了芯部自发光诊断图像的空间分辨率,准确评估诊断不确定度有利于开展内爆对称性调谐,提高内爆性能。建立了针对KB显微镜的在线不确定度评估方法,详细分析了其在线背光照相实验中的图像分辨率和噪声,并对内爆物理实验中的芯部自发光数据进行了不确定度评估。结果显示,芯部自发光P2不确定度为6%,P4不对称性的不确定度为8%,满足了现阶段内爆物理实验的诊断需求。
ICF 内爆不对称性 KB显微镜 不确定度 ICF ignition asymmetry Kirkpatrick-Baez microscope uncertainty 
强激光与粒子束
2023, 35(3): 032002
作者单位
摘要
渤海大学 物理科学与技术学院, 辽宁 锦州 121013
金纳米粒子具有较大光吸收截面和光谱选择性, 在激光点火含能材料中具有极大的应用潜力。本文根据目前实验中所制备的纳米金属复合炸药的结构和尺寸, 构建了三种复合炸药的光吸收模型, 分别为Au核RDX壳球形纳米粒子, Au-RDX-Au-RDX均匀相间的球形纳米粒子, 以及RDX核Au壳的纳米粒子。利用离散偶极近似方法(DDA)对纳米金复合炸药的近红外吸收光谱进行了分析, 并考虑了多种模型核壳尺寸及周围环境介质对光吸收性质的影响。获得了近红外光辐照下, 纳米复合结构的最佳结构尺寸参数。结果表明, 当制备成纳米级Au核RDX壳球形粒子时, 其对近红外光(800 nm)波长具有较高的光吸收, 相应的核壳尺寸约为60 nm和20 nm左右, 且在水中的吸收要比在空气中的吸收强。
金纳米粒子 近红外激光点火 核壳尺寸 吸收光谱 gold nanoparticles near-infrared laser ignition core shell size absorption spectroscopy 
光散射学报
2022, 34(3): 203
Fuyuan Wu 1,2Xiaohu Yang 2,3Yanyun Ma 2,3Qi Zhang 1,2[ ... ]Jie Zhang 1,2,*
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (MOE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai200240, China
3 Department of Physics, National University of Defense Technology, Changsha410073, China
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
5 Department of Astronomy, Beijing Normal University, Beijing100875, China
6 Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei230026, China
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.
double-cone ignition genetic algorithm pulse optimization random forest 
High Power Laser Science and Engineering
2022, 10(2): 02000e12

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!