潘林超 1,2葛宝臻 1,2张福根 1,3,*
作者单位
摘要
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 光电信息技术教育部重点实验室, 天津 300072
3 珠海真理光学仪器有限公司, 广东 珠海 519085
为了扩展散射角的接收范围,提高激光粒度仪对亚微米颗粒的测量精度和分辨率,提出了一种结构简单的环形样品池方法。该方法理论上能够连续无缝地接收0°~180°的散射光,且具有测量下限低的优势。基于环形样品池测量方法,搭建了新型激光粒度测量装置,并对50,100,200,400 nm的标准粒子样品以及由它们组合而成的混合样品进行了测量实验,并与传统样品池的测量结果进行了比较。结果表明,环形样品池方法能够准确分辨体积中位径比值为1∶2的标准粒子混合样品。对于亚微米颗粒,环形样品池方法具有测量下限低、测量精度高、分辨率高和可靠性高的特点。
散射 环形样品池 激光粒度仪 亚微米颗粒 
光学学报
2017, 37(10): 1029001
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学, 北京 100049
亚微米虚拟冲击器是实现高灵敏度生物气溶胶光学在线监测的前提,是当前的研究热点之一。基于空气动力学理论与相关研究基础,设计了一种切割粒径为0.4 μm的亚微米级粒子虚拟冲击器,利用计算流体动力学(CFD)分析软件Fluent以及离散相模型对虚拟冲击器结构的入口喷嘴与收集孔间距、收集孔径和流量比等各种设计参数进行模拟与分析,得到了一组优化设计参数并制作了虚拟冲击器实物。测试结果表明,该虚拟冲击器具有良好的浓缩效果,对0.37、0.5、0.7 μm聚苯乙烯乳胶球(PSL)粒子的收集效率等参数与仿真结果基本吻合,验证了流体动力学分析方法的可行性。该虚拟冲击器切割粒径的实验测试结果达到0.4 μm,满足实际应用需求。
生物光学 虚拟冲击器 流体动力学 亚微米粒子 生物气溶胶监测 
中国激光
2014, 41(1): 0116002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!