黄婷 1,2林楠 1,*张秋月 1,2何天将 1,2[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
半导体可饱和吸收镜(SESAM)作为超快激光技术中最常用的被动锁模器件,由于可自启动、插入损耗小、集成度高和设计灵活等优点,具有广泛的应用范围和极佳的商业前景。本文主要介绍SESAM的锁模原理和发展现状,对目前SESAM的外延结构、生长方式和参数性能进行总结归纳,详尽描述其在固体激光器、半导体激光器和光纤激光器的锁模最新进展,并指出各类锁模激光器的性能特点和未来发展方向。
半导体可饱和吸收镜 被动锁模 激光器 超快激光 
激光与光电子学进展
2024, 61(9): 0900008
Author Affiliations
Abstract
1 Applied Physics Division, Soreq NRC, Yavne, Israel
2 Applied Physics Institute, The Hebrew University, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
Here we report on a simple-to-implement and cost-effective approach for laser pulse contrast enhancement, based on the ${\chi}^{(3)}$ nonlinear self-focusing effect. An intentionally induced and gently controlled self-focusing in a thin glass transforms the time-dependent intensity into variation in beam divergence. Followed by a spatial discriminating filter, only the strongly focused fraction traverses the setup, at the expense of efficiency. A numerical model, accounting for the pulse and material parameters via a Gaussian ABCD matrix, provides an estimate for the instantaneous beam waist and transmission efficiency, which enables us to evaluate the resulting contrast enhancement. The estimated contrast enhancement spans between 0.5 and 2.5 orders of magnitude, in conjunction with approximately 25%–90% estimated efficiency, depending on the pulse parameters. In a preliminary experiment we demonstrated the effect with 10s-μJ sub GW regime with approximately 40 $\%$ efficiency and a contrast improvement of more than or equal to 20 dB.
nonlinear optics pulse contrast self-focusing ultrafast laser 
High Power Laser Science and Engineering
2024, 12(2): 02000e18
作者单位
摘要
1 桂林电子科技大学电子工程与自动化学院,广西 桂林 541004
2 桂林电子科技大学信息与通信学院,广西 桂林 541004
短磁聚焦脉冲展宽分幅相机是一种具有长漂移区的二维超快诊断设备。通常采用轴上和离轴的点空间分辨率对其近轴空间分辨能力和工作面积进行评估,但由于像场弯曲会引起高斯像面的空间分辨不均匀,因此难以评价相机的整体空间分辨能力,所以研究一种能量化空间分辨能力的方法具有重要意义。为探讨新方法,采用COMSOL软件建立模型,基于场曲特性重建三维成像曲面,采用标准差分析成像曲面与高斯像面之间的偏离程度,通过融合点空间分辨率和整体调制度构建高斯像面空间分辨率,并运用相对误差量化高斯像面空间分辨均匀性。研究结果显示,在组合磁透镜的孔距为200 mm、漏磁缝隙为10 mm、轴向宽度为100 mm、漂移区长度为400 mm、成像半径为21 mm、阴极为-3.75 kV的情况下,随着成像磁场变化,成像曲面与高斯像面之间的偏离程度,以及高斯像面空间分辨率均呈开口向上的抛物线形状,并在成像磁场为41.97 Gs(1 Gs=10-4 T)时,两像面偏离程度标准差达到最小,为2.82 mm,高斯像面空间分辨率提升至最优,为292.80 μm,表征空间均匀性的调制度差值降低至最小,为330%。本文研究为评估短磁聚焦脉冲展宽分幅相机的最优空间分辨性能提供了一种可量化的参考方法。
超快诊断技术 脉冲展宽分幅相机 短磁聚焦 高斯像面 空间分辨能力 
激光与光电子学进展
2024, 61(8): 0811010
周瑶 1,2费鹏 1,2,*
作者单位
摘要
1 华中科技大学光学与电子信息学院,湖北 武汉 430074
2 高端生物医学成像省部共建重大科技基础设施,湖北 武汉 430074
显微镜的光学孔径和测量带宽的有限性限制了生物应用中的信息获取,包括在观测生物体系的精细亚细胞结构动力学过程、活体超快瞬态生物学过程,以及介观离体组织的高效三维成像等,这一问题成为多领域生物医学研究的制约因素。传统荧光显微镜的局限性促使研究人员着手探索新型荧光显微成像原理和方法。研究者们引入了人工智能手段,以提高荧光显微成像的速度和精度,从而增加信息获取的通量。本文以细胞生物学、发育生物学和肿瘤医学为视角,详细分析了在这些领域中通量限制带来的挑战。结合深度学习,突破了传统荧光显微成像的通量限制问题,为物理光学和图像处理领域的进一步发展提供了契机。这一创新助力于生物医学研究的推进,使科学家能够更全面、深入地理解生命和健康领域的复杂现象。因此,本研究不仅对生物医学领域具有重要意义,而且为未来的研究和应用提供了崭新的可能性。
荧光显微 深度学习 超分辨成像 超快成像 高通量成像 
激光与光电子学进展
2024, 61(16): 1600001
作者单位
摘要
中国科学院福建物质结构研究所中国科学院光电材料化学与物理重点实验室,福建 福州 350002
报道了一种高重复频率、宽波段连续可调谐的紫外/深紫外超短脉冲激光器,调谐范围为192~300 nm。该激光器采用可调谐的钛宝石锁模激光器作为基频光源,通过优化设计多级倍频/和频组合与非线性晶体角度,分三个波段进行频率上转换,分别产生了192~210 nm、210~250 nm、250~300 nm的深紫外/紫外激光,最终合成一路覆盖192~300 nm的连续可调谐超短脉冲激光,同时还获得了调谐范围为375~500 nm的紫外/可见光波段的激光输出。光束切换、晶体角度调节、群速补偿、光束指向稳定等过程的电控设计,使得激光器在整个调谐过程中可由程序控制,无需复杂的人工调节,具备了单台激光器的可操控性和实用性。
激光器 非线性激光变频 深紫外激光 超快激光 可调谐 
中国激光
2024, 51(7): 0701013
王佶 1,2赵昆 1,2,*
作者单位
摘要
1 中国科学院物理研究所,北京凝聚态物理国家研究中心,北京 100190
2 松山湖材料实验室,广东 东莞 523808
高重复频率极紫外光源已被广泛应用于电子动力学研究,并且在阿秒谱学研究和显微成像中有广阔的应用前景。高重复频率极紫外光源正在朝更高重复频率、更高光子通量、更高光子能量和更短脉宽的方向发展。介绍了高重复频率极紫外光源的产生和调控,以及极紫外光源应用的分辨能力优化,并展望了高重复频率极紫外光源的未来发展趋势。
非线性光学 超快光学 高次谐波 极紫外光源 
中国激光
2024, 51(7): 0701002
Author Affiliations
Abstract
1 School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
2 Research Institute of Future Technology, South China Normal University, Guangzhou 510006, China
We report a high-stability ultrafast ultraviolet (UV) laser source at 352 nm by exploring an all-fiber, all-polarization-maintaining (all-PM), Yb-doped femtosecond fiber laser at 1060 nm. The output power, pulse width, and optical spectrum width of the fiber laser are 6 W, 244 fs, and 17.5 nm, respectively. The UV ultrashort pulses at a repetition rate of 28.9 MHz are generated by leveraging single-pass second-harmonic generation in a 1.3-mm-long BiB3O6 (BIBO) and sum frequency generation in a 5.1-mm-long BIBO. The maximum UV output power is 596 mW. The root mean square error of the output power of UV pulses is 0.54%. This laser, with promising stability, is expected to be a nice source for frontier applications in the UV wavelength window.
all-polarization-maintaining fiber ultrafast fiber laser UV laser 
Chinese Optics Letters
2024, 22(3): 031404
赵树森 1,2何宏智 1,3韩世飞 1,2,4姜璐 1,2,4[ ... ]张谷令 3,*
作者单位
摘要
1 中国科学院半导体研究所全固态光源实验室,北京 100083
2 北京市全固态激光先进制造工程技术研究中心,北京 100083
3 中央民族大学 理学院,北京 100081
4 中国科学院大学 材料科学与光电技术学院,北京 100049
透明硬脆材料由于其优异的力学性能、热稳定性、耐腐蚀性以及光电性能,广泛应用于半导体与电子领域。传统透明硬脆材料切片方法效率低、材料损耗大,制约了硬脆材料的推广应用。激光剥离技术是近年来新兴的一种透明硬脆材料切片新方法,较传统金刚线切割方法大幅提升硬脆材料的切片效率和材料利用率,目前已发展成为硬脆材料激光加工领域学术研究与产业应用的焦点。文中深入分析透明硬脆材料激光剥离物理过程,归纳激光剥离过程关键科学问题:透明硬脆材料对激光的非线性吸收、激光作用下材料内部微观结构演化与缺陷扩展规律,以及激光光场调控对材料改质影响机制等。基于这些科学问题,综述了近年来激光剥离不同类型透明硬脆材料的研究进展,目前用于激光剥离的材料已涵盖了SiC、Si、GaN、金刚石等半导体材料,蓝宝石、多晶Al2O3、氧化锆等陶瓷材料,激光剥离技术已发展出超快激光双脉冲诱导剥离、超快激光-化学辅助剥离、多激光复合剥离等。激光剥离物理过程是一个典型的激光-材料-热学-力学多学科交叉问题,尽管在实验结果方面获得了显著突破和迅猛发展,但目前对于工艺机理仍缺乏深入的理论与数值建模研究。未来透明硬脆材料激光剥离技术将会朝着百微米以下超薄厚度剥离、改质层低损伤、工艺自适应等方向发展,将为半导体与电子等领域快速发展提供更大的技术支撑。
超快激光 硬脆材料 剥离 非线性吸收 缺陷扩展 光场调控 ultrafast laser hard and brittle materials splitting nonlinear absorption defect extension optical field modulation 
红外与激光工程
2024, 53(1): 20230487
作者单位
摘要
桂林电子科技大学电子工程与自动化学院,广西 桂林 541004
基于磁聚焦成像的脉冲展宽分幅相机是具有超快时间分辨的诊断设备,空间电荷效应是制约其时空性能向更高量级提升的主要因素。为研究脉冲展宽分幅相机中的空间电荷效应,基于电子脉冲电势分布和电场力方程建立研究模型,将电子脉冲动态特性融入模型分析。研究结果显示,由成像磁场引起的电子脉冲动态半径对空间电荷效应时空弥散影响显著,当轴上磁场强度为4.585×10-3 T时,随着离轴位置增加至15 mm,磁场强度提高到4.763×10-3 T;由于离轴电子脉冲散焦使动态半径较大,因此在降低电子密度的同时,使空间电荷效应的时间弥散由2.94 ps减小至483 fs,空间弥散由668 μm减小至22 μm;当轴上磁场强度由4.585×10-3 T降低至3.359×10-3 T时,与最优空间分辨性能相似,空间电荷效应时空弥散在磁场3.4×10-3~3.5×10-3 T区域内达到最小,此时离轴15 mm内的时间弥散范围为256~392 fs,空间弥散范围为3.1~15.4 μm。研究结论为分析磁场对脉冲展宽分幅相机空间电荷效应的影响提供一定的理论参考。
超快光学 超快诊断技术 脉冲展宽分幅相机 空间电荷效应 成像磁场 时空弥散 
光学学报
2024, 44(5): 0532001
赵智炎 1,2冯昱森 2罗子艺 1,*蔡得涛 1[ ... ]于颜豪 2,**
作者单位
摘要
1 广东省科学院中乌焊接研究所,广东省现代焊接技术重点实验室,广东 广州 510650
2 吉林大学电子科学与工程学院集成光电子学国家重点实验室,吉林 长春 130012
3 北京大学东莞光电研究院,广东 东莞 523808
金刚石作为一种具有独特优异性能的半导体材料,在光学和电子学领域具有重要的应用价值。目前生长金刚石最常用的方法是化学气相沉积(CVD)法,采用该方法制备的金刚石薄膜通常为多晶结构,表面粗糙度高、颗粒大的缺点制约了金刚石薄膜的应用。笔者提出了飞秒-纳秒-离子束刻蚀的复合抛光方法并采用该方法对CVD金刚石薄膜进行抛光。结果表明:经飞秒-纳秒激光刻蚀后,金刚石表面粗糙度降低得十分明显,由未刻蚀时的4 μm降至0.5 μm左右,但表面出现了明显的石墨化现象;进一步采用离子束刻蚀去除表面的石墨层,最低可将表面粗糙度降至0.47 μm。所提方法实现了金刚石表面的无改性平滑抛光,为金刚石表面微纳器件的发展奠定了基础。
超快激光 金刚石薄膜 激光抛光 离子束刻蚀 粗糙度 
中国激光
2024, 51(16): 1602210

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!