原子与分子物理学报, 2008, 25 (2): 344, 网络出版: 2008-08-17  

Na2(A1∑u+,v=8~b3Ⅱ0u,v=14)-Na体系转动传能的碰撞量子干涉效应

Collisional quantum
作者单位
1 辽宁大学物理系,沈阳,110036
2 沈阳航空工业学院,沈阳,110036
摘要
沙国河及其工作组于1995年发表了COA1Π(v=0)~e3∑-(v=1)与He1,Ne及其它碰撞伴的碰撞过程中转动传能的碰撞量子干涉现象,并得到了积分干涉角,陈等从理论和实验上发现了Na2(A1∑u+,v=8~b3Π0u,v=14)体系与Na(3s)碰撞的碰撞量子干涉现象,孙等计算了其积分干涉角,但是对微分干涉角没有过多的计算.本文作为对原子-双原子体系碰撞诱导转动传能的进一步理论研究,在含时一级波恩近似的基础上考虑各向异性相互作用势和长程相互作用势,计算了单叁混合态的Na2(A1∑u+,v=8-bΠ0u,v=14)体系与Na碰撞的微分干涉角,并得到了微分干涉角与碰撞参数的关系,此理论模型对理解和进行分子束实验是非常重要的.interference effect on rotational energy transfer in Na2(A1
Abstract
Sha and co-workersreported the evidence for Collisional quantum interference (CQI) on rotational energytransfer in the CO A1Π(v=0)~e3∑-(v=1)system in collision withHe, Ne and other partners in 1995 and had measured the integral interference angles. Chenet al. Observed the COI in Na2(A1∑u+,v=8~B3π0u,v=14)system in collision with Na(3s) experimentally andtheoretically, Sun et al measured the integral interference angles. But the differentialinterference angles are not measured much. In this paper, as a further theoretical studyof the collision-induced quantum interference on rotational energy transfer in anatom-diatom system, based on the first-Born approximation of time-dependent perturbationtheory, taking into account the anisotropic Lennard-Jones interaction potential and thelong-range interaction potential, the differential interference angles for singlet-tripletmixed states of Na2(A1∑u+,v=8~b3Π0u,v=14)system in collision with Na were calculted theoretically.The relationships of differential interference angle versus impact parameter includingcollision parameter, velocity, are obtained. This theoretical model is important tounderstand or perform the experiment in the molecular beam.lijian@163.com作者简介:马凤才.E-mail:fcma@lnu.edu.cn.通讯作者

李健, 倪艳清, 曲健, 李永庆, 马凤才. Na2(A1∑u+,v=8~b3Ⅱ0u,v=14)-Na体系转动传能的碰撞量子干涉效应[J]. 原子与分子物理学报, 2008, 25(2): 344. 李健, 倪艳清, 曲健, 李永庆, 马凤才. Collisional quantum[J]. Journal of Atomic and Molecular Physics, 2008, 25(2): 344.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!