首页 > 论文 > 中国激光 > 46卷 > 9期(pp:902006--1)

高强钢激光-MIG复合焊对接间隙下的焊缝成形机理

Welding Seam Forming Mechanism of High-Strength Steel Laser-Metal Inert Gas Hybrid Welding with Butt Gap

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用光纤激光-熔化极稀有气体保护(MIG)复合焊对不同对接间隙下的3 mm厚低合金高强钢进行焊接。在焊接速度恒定的条件下,研究了不同对接间隙下焊缝的成形过程,并与零间隙下相同工艺参数的激光-MIG复合焊的焊缝形貌进行对比。结果表明:在有对接间隙时,焊缝及其热影响区的上下宽度基本一致(呈U形),而在零间隙下,焊缝及其热影响区的宽度均呈上宽下窄(Y形)的形态。焊缝成形机理如下:在激光-MIG复合焊进行有对接间隙的焊接时,电弧等离子体的形态有三种不同的变化(与任一侧试板起弧燃弧形成的“分叉电弧”以及与两试板同时起弧燃弧形成的“十字电弧”),电弧的三种形态不断变化,形成“摆动”态;“摆动”态电弧等离子体的作用是预热和熔化工件侧壁,激光热源作用在熔池上起到加大熔深、稳定电弧和消除电弧热源导致的侧壁未熔合的作用;对接间隙下电弧热源作用的范围较大,使得母材受热更加均匀;与零间隙焊缝相比,有间隙下的焊缝组织更均匀。

Abstract

In this study, 3-mm thick low-alloy high-strength steels with different butt gaps were welded by optical fiber laser-metal inert gas (MIG) protection hybrid welding. The forming processes of weld seams with different butt gaps at a constant welding speed were studied and the formed shapes were compared with the morphology of laser-MIG hybrid welding with the same process parameters under zero gap conditions. The results demonstrate that the upper and lower widths of the weld seam and its heat-affected zone are basically same under butt gaps (U-shaped), while the weld-seam width and its heat-affected zone are up-wide and down-narrow under zero-gap (Y-shaped) conditions. The formation mechanism of weld seams is as follows: when laser-MIG hybrid welding is conducted with a butt gap, three different arc plasma shapes exist, i.e. bifurcated arc shapes formed by arc striking/arcing with either side of the test plate and the cross arc shapes formed by arc striking/arcing with both test plates at the same time. The three forms of arc shapes change continuously to form a swing arc pattern. The effect of the swing arc plasma is to preheat and melt the side wall of the workpieces. The laser heat source operates on the molten pool to increase the penetration, stabilize the arc, and eliminate incomplete fusion of the side wall caused by the arc heat source. The arc heat source with a butt gap has a large effective range, and the base metal is heated more evenly. The microstructures of the butt gap welds are more homogeneous than that of the zero-gap welding seams.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0902006

所属栏目:激光制造

基金项目:国家自然科学基金、上海市“创新行动计划”基础研究领域项目、上海汽车工业科技发展基金;

收稿日期:2019-01-25

修改稿日期:2019-05-22

网络出版日期:2019-09-01

作者单位    点击查看

刘政君:上海工程技术大学材料工程学院, 上海 201620
顾思远:上海工程技术大学材料工程学院, 上海 201620
张培磊:上海工程技术大学材料工程学院, 上海 201620上海市激光先进制造技术协同创新中心, 上海 201620
于治水:上海工程技术大学材料工程学院, 上海 201620上海市激光先进制造技术协同创新中心, 上海 201620
叶欣:上海工程技术大学材料工程学院, 上海 201620上海市激光先进制造技术协同创新中心, 上海 201620
顾勇:上海汇众汽车制造有限公司, 上海 200122

联系人作者:张培磊(peilei@sues.edu.cn)

备注:国家自然科学基金、上海市“创新行动计划”基础研究领域项目、上海汽车工业科技发展基金;

【1】Farrokhi F and Kristiansen M. A practical approach for increasing penetration in hybrid laser-arc welding of steel. Physics Procedia. 83, 577-586(2016).

【2】Bunaziv I, Akselsen O M, Frostevarg J et al. Laser-arc hybrid welding of thick HSLA steel. Journal of Materials Processing Technology. 259, 75-87(2018).

【3】Zhang X, Mi G Y, Chen L et al. Microstructure and performance of hybrid laser-arc welded 40 mm thick 316L steel plates. Journal of Materials Processing Technology. 259, 312-319(2018).

【4】Bunaziv I, Frostevarg J, Akselsen O M et al. The penetration efficiency of thick plate laser-arc hybrid welding. The International Journal of Advanced Manufacturing Technology. 97, 2907-2919(2018).

【5】Chen G Y, Chen F, Zhang Y et al. Effect of butt joint gap to high-strength automobile steel of fiber laser welding. Chinese Journal of Lasers. 38(6), (2011).
陈根余, 陈飞, 张屹 等. 对接间隙对车用高强钢光纤激光焊接的影响. 中国激光. 38(6), (2011).

【6】Gao M, Zeng X Y, Yan J et al. Groove gap bridging ability of laser-arc hybrid welding. China Mechanical Engineering. 19(20), 2496-2500(2008).
高明, 曾晓雁, 严军 等. 激光-电弧复合焊接的坡口间隙桥接能力. 中国机械工程. 19(20), 2496-2500(2008).

【7】Lamas J and Frostevarg J. Kaplan A F H. Gap bridging for two modes of laser arc hybrid welding. Journal of Materials Processing Technology. 224, 73-79(2015).

【8】Zhang Z, Shan J G, Wu A P et al. Study on high speed laser-MIG hybrid welding for large gap joint of stainless steel sheet. Transactions of the China Welding Institution. 36(10), 109-112(2015).
张洲, 单际国, 吴爱萍 等. 不锈钢薄板大间隙接头激光-MIG电弧复合高速焊接工艺. 焊接学报. 36(10), 109-112(2015).

【9】Wahba M, Mizutani M and Katayama S. Single pass hybrid laser-arc welding of 25 mm thick square groove butt joints. Materials & Design. 97, 1-6(2016).

【10】Zhang Y L, Liu J, Shi Y et al. Effect of current/voltage matching on stability of laser-arc hybrid welding process for aluminum alloy. Transactions of the China Welding Institution. 39(1), 79-83(2018).
张亚亮, 刘佳, 石岩 等. 电流/电压匹配对铝合金激光-电弧复合焊接过程稳定性的影响. 焊接学报. 39(1), 79-83(2018).

【11】Wang W, Lin S Y, Wang X Y et al. Double electric conduction mechanism of Nd∶YAG laser-pulse MAG hybrid welding. Chinese Journal of Lasers. 39(2), (2012).
王威, 林尚扬, 王旭友 等. 激光-熔化极脉冲电弧复合焊接的双重导电机制. 中国激光. 39(2), (2012).

【12】Liu F D, Zhang H, Du S F et al. Influence of laser power on arc and droplet behaviors in droplets on CO2 laser-MAG arc hybrid welding. Journal of Mechanical Engineering. 49(4), 75-82(2013).
刘凤德, 张宏, 杜劭峰 等. 激光功率对CO2激光-MAG电弧复合焊电弧与熔滴行为的影响. 机械工程学报. 49(4), 75-82(2013).

【13】Zhao L, Tsukamoto S, Arakane G et al. Study on distribution of alloying elements in laser-arc hybrid welds. Chinese Journal of Lasers. 42(4), (2015).
赵琳, 塚本进, 荒金吾郎 等. 激光电弧复合焊焊缝合金元素分布的研究. 中国激光. 42(4), (2015).

引用该论文

Zhengjun Liu,Siyuan Gu,Peilei Zhang,Zhishui Yu,Xin Ye,Yong Gu. Welding Seam Forming Mechanism of High-Strength Steel Laser-Metal Inert Gas Hybrid Welding with Butt Gap[J]. Chinese Journal of Lasers, 2019, 46(9): 0902006

刘政君,顾思远,张培磊,于治水,叶欣,顾勇. 高强钢激光-MIG复合焊对接间隙下的焊缝成形机理[J]. 中国激光, 2019, 46(9): 0902006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF