首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1006003--1)

基于中短距离星间链路的可见光通信及性能分析

Visible-Light Communication and Performance Analysis Based on Medium- and Short-Distance Inter-Satellite Links

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

多卫星协同网络由于具有更高的空间和时间分辨率,已逐渐成为未来太空任务的替代解决方案。大量的异构小卫星作为传感网络被部署于太空中,具有低成本、高性能和较强的灵活性等优势。与传统卫星相比,该空间部署网络能够通过更长的观测基线来增强任务,因此具有大故障容限、实时可重构、适应高度动态需求以及降低寿命周期成本等优点[1]。为实现分布式多卫星节点之间的实时性协作,需要建立大容量、小时延、高可靠性的星间通信链路。

Abstract

To meet constraints on size, weight, and power consumption in small satellite platforms and explore alternative solutions for radio frequency and laser-based communication in medium- and short-distance inter-satellite links, this study explores the feasibility of visible-light communication (VLC) based medium- and short-distance inter-satellite communication in multi-satellite networks. Using the satellite tool kit (STK), the binary star formation flying configuration is constructed, background-light noise introduced by the sun and stars is quantitatively analyzed, and a medium- and short-range inter-satellite VLC link model is constructed. Then, to improve the link capacity and reliability, the VLC link is further developed into a single-input multi-output VLC (SIMO-VLC) system. The influences of different diversity merging algorithms on the link’s performance are evaluated by numerical simulation. Simulation results show that the stray light power introduced by solar radiation is below 10 μW throughout most of the time period, and the background light power introduced from the ground is reduced by 75%. In order to achieve a data transmission rate of 112.5 Mbit/s and a bit error rate of 1×10 -6 within 20 km, the light power required by the system is at least 4.55 W. Compared with the single-input single-output system, the SIMO-based diversity detection scheme can achieve better performance, and the required transmission power and communication distance are effectively improved with the increase of the receiving branch, which can provide a reference for the design of VLC-based inter-satellite links and extending their outdoor application scenarios.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1006003

所属栏目:光纤光学与光通信

基金项目:国家863计划、国家重点研发计划;

收稿日期:2019-05-22

修改稿日期:2019-06-21

网络出版日期:2019-10-01

作者单位    点击查看

陈泉润:中国科学院上海技术物理研究所, 上海 200083中国科学院大学, 北京 100049
虞翔:中国科学院上海技术物理研究所, 上海 200083
崔文楠:中国科学院上海技术物理研究所, 上海 200083
张涛:中国科学院上海技术物理研究所, 上海 200083上海科技大学, 上海 201210

联系人作者:陈泉润(qrchen_work@126.com); 张涛(haozzh@sina.com);

备注:国家863计划、国家重点研发计划;

【1】Carpenter J R, Leitner J, Folta D et al. Benchmark problems for spacecraft formation flying missions. [C]∥AIAA Guidance, Navigation, and Control Conference and Exhibit, August 11-14, 2003, Austin, Texas, USA. Reston: AIAA Publications. 5364, (2003).

【2】Zhang T, Fu Q, Jiang H L et al. Effects of transmitting and receiving energy efficiency on the performance of co-focal reflective type laser communication networking antenna system. Acta Optica Sinica. 36(12), (2016).
张涛, 付强, 姜会林 等. 能量收发效率对共焦点反射式光通信组网天线系统性能的影响. 光学学报. 36(12), (2016).

【3】Wood L, Ivancic W and D?rpelkus K P. Using light-emitting diodes for intersatellite links. [C]∥2010 IEEE Aerospace Conference, March 6-13, 2010, Big Sky, MT. New York: IEEE. 11258517, (2010).

【4】Zafar F, Bakaul M and Parthiban R. Laser-diode-based visible light communication: toward gigabit class communication. IEEE Communications Magazine. 55(2), 144-151(2017).

【5】Shen T. Optical wireless communication for mobile platforms Maryland, USA: University of Maryland,. College Park. (2016).

【6】Chi N, Lu X Y, Wang C et al. High-speed visible light communication based on LED. Chinese Journal of Lasers. 44(3), (2017).
迟楠, 卢星宇, 王灿 等. 基于LED的高速可见光通信. 中国激光. 44(3), (2017).

【7】Wang J A, Che Y, Guo L Y et al. LED layout optimization and performance analysis of indoor visible light communication system. Chinese Journal of Lasers. 45(5), (2018).
王加安, 车英, 郭林炀 等. 室内可见光通信系统光源LED布局优化与性能分析. 中国激光. 45(5), (2018).

【8】Bian R, Tavakkolnia I and Haas H. 15.73 Gb/s visible light communication with off-the-shelf LEDs. Journal of Lightwave Technology. 37(10), 2418-2424(2019).

【9】Chen H, Guan W P, Li S M et al. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm. Optics Communications. 413, 103-120(2018).

【10】Béchadergue B, Chassagne L and Guan H Y. Experimental comparison of pulse-amplitude and spatial modulations for vehicle-to-vehicle visible light communication in platoon configurations. Optics Express. 25(20), 24790-24802(2017).

【11】Wang F M, Liu Y F, Jiang F Y et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception. Optics Communications. 425, 106-112(2018).

【12】Nakajima A, Sako N, Kamemura M et al. ShindaiSat: a visible light communication experimental micro-satellite. [C]∥Proceedings of the International Conference on Space Optical Systems and Applications(ICSOS), October 9-12, 2012, Ajaccio, Corsica, France. Koganei: NICT. 12-1(2012).

【13】Zhang M L, Yuan X G and Huang Y Q. A 10.7 km visible light communications experiment. [C]∥2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), July 5-8, 2016, Vienna, Austria. New York: IEEE. 231-234(2016).

【14】Komine T and Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics. 50(1), 100-107(2004).

【15】Cailean A M and Dimian M. Current challenges for visible light communications usage in vehicle applications: a survey. IEEE Communications Surveys & Tutorials. 19(4), 2681-2703(2017).

【16】Zhao J Q, Xu Y F, Li J H et al. Turbulence channel modeling of visible light communication under strong background noise and diversity receiving technologies. Acta Optica Sinica. 36(3), (2016).
赵嘉琦, 许银帆, 李洁慧 等. 强背景光下可见光大气湍流信道建模及分集接收技术. 光学学报. 36(3), (2016).

【17】Wan M, Su Y, Yang R et al. Improvement of signal to noise ratio in astronomical objects detection in daytime. High Power Laser and Particle Beams. 15(12), 1151-1154(2003).
万敏, 苏毅, 杨锐 等. 提高白天观测星体信噪比的方法研究. 强激光与粒子束. 15(12), 1151-1154(2003).

【18】-09-07) http: ∥www.navipedia.net/index.php/. Satellite Formation Flying. (2018).

【19】Kumar K D, Bang H C and Tahk M J. Satellite formation flying using along-track thrust. Acta Astronautica. 61(7/8), 553-564(2007).

【20】Clohessy W H and Wiltshire R S. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences. 27(9), 653-658(1960).

【21】Ling L, Zhang T and Zheng W B. Visible analysis of orbital target in formation-flying satellites based on space-based optical observation. Acta Optica Sinica. 32(s1), (2012).
凌丽, 张涛, 郑伟波. 基于编队星座的在轨目标天基光学观测可见性分析. 光学学报. 32(s1), (2012).

【22】Kaushal H and mitigation techniques[J/OL]. -06-16)[2019-05-10]. https: ∥arxiv. org/abs/1506, (2015).

【23】Li J. Research on key technologies of APS star sensor. Changchun: University of Chinese Academy of Sciences. (2005).
李杰. APS 星敏感器关键技术的研究. 长春: 中国科学院大学. (2005).

【24】Liu Z Y, Hu Y, Zhang L et al. Power calculation and communication distance equivalent demonstration for optical communication. Acta Optica Sinica. 28(s2), 188-190(2008).
刘智颖, 胡源, 张磊 等. 光通信中的功率计算与通信距离等效验证. 光学学报. 28(s2), 188-190(2008).

【25】Zhou S C. Introduction to advanced infrared photoelectric engineering. (2014).
周世椿. 高级红外光电工程导论. (2014).

【26】Borah D K, Boucouvalas A C, Davis C C et al. A review of communication-oriented optical wireless systems. EURASIP Journal on Wireless Communications and Networking. 2012, (2012).

【27】Liu W H, Xu Z Y and Yang L Q. SIMO detection schemes for underwater optical wireless communication under turbulence. Photonics Research. 3(3), 48-53(2015).

引用该论文

Quanrun Chen,Xiang Yu,Wennan Cui,Tao Zhang. Visible-Light Communication and Performance Analysis Based on Medium- and Short-Distance Inter-Satellite Links[J]. Acta Optica Sinica, 2019, 39(10): 1006003

陈泉润,虞翔,崔文楠,张涛. 基于中短距离星间链路的可见光通信及性能分析[J]. 光学学报, 2019, 39(10): 1006003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF