首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1002007--1)

紫外激光焊接镀铜玻璃工艺的研究

UV-Laser Welding Process of Copper-Plated Glass

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现在玻璃基体上直接制造电路的封装技术,采用真空蒸发法在玻璃上镀涂不同厚度的铜膜;运用ANSYS软件模拟计算镀铜玻璃焊接时的瞬态温度场及瞬态应力场分布;利用纳秒紫外激光进行焊接实验;观察测试了焊接接头形貌和力学性能。理论计算表明:当焊接电流强度为27 A时,焊接样品铜膜的平均温度大约为3000 ℃,铜膜气化速率缓慢,焊接效果较好;热应力集中在铜膜上,玻璃的热应力小于玻璃的理论强度,其中焊接速度为70 mm/s时,热应力最小;铜膜厚度为80 nm的焊接样品的抗拉强度最高,为14.34 MPa。由此可得到激光焊接的最佳工艺参数:焊接电流为27 A,焊接速度为70 mm/s,铜膜厚度为80 nm。

Abstract

Glass was coated with copper films of different thicknesses by the vacuum evaporation method to realize the packaging technology for circuit manufacturing directly on glass substrate. Transient temperature and stress fields during welding of copper-plated glass were calculated using the ANSYS software. Welding experiments were conducted using a nanosecond ultraviolet laser, and the morphology and mechanical properties of welded joints were observed and tested. Theoretical calculations show that when the welding current intensity is 27 A, the average temperature of the copper film of the welding sample is approximately 3000 ℃, and the gasification speed of the copper film is slow; therefore, the welding effect is better. Thermal stresses are concentrated in the copper film whereas the thermal stress of glass is less than its theoretical strength. When the welding speed is 70 mm/s, the thermal stresses are the least. A copper film of thickness of 80 nm gives the highest welding sample tensile strength of 14.34 MPa. The optimal parameters of the laser welding process are the welding current intensity of 27 A, welding speed of 70 mm/s, and copper film thickness of 80 nm.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249; TG44; O242.21

DOI:10.3788/CJL202047.1002007

所属栏目:激光制造

基金项目:国家重点研发计划、广东省科技资助项目、广东省科技计划重大项目、广东省普通高校青年创新人才类项目、广东省自然科学基金、华南师范大学青年学者基金;

收稿日期:2020-04-20

修改稿日期:2020-06-03

网络出版日期:2020-10-01

作者单位    点击查看

黄明贺:华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
张庆茂:华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
吕启涛:大族激光科技股份有限公司, 广东 深圳 518052
张洁娟:华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
郭亮:华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006

联系人作者:张庆茂(zhangqm@scnu.edu.cn)

备注:国家重点研发计划、广东省科技资助项目、广东省科技计划重大项目、广东省普通高校青年创新人才类项目、广东省自然科学基金、华南师范大学青年学者基金;

【1】Su Z X, Xing C Y, Luo B, et al. Microsystem wafer-level 3D packaging based on composite glass-silicon substrate [J]. Navigation and Control. 2019, 18(2): 61-68.
苏兆喜, 邢朝洋, 罗斌, 等. 基于玻璃-硅复合基板的微系统圆片级三维封装 [J]. 导航与控制. 2019, 18(2): 61-68.
Su Z X, Xing C Y, Luo B, et al. Microsystem wafer-level 3D packaging based on composite glass-silicon substrate [J]. Navigation and Control. 2019, 18(2): 61-68.
苏兆喜, 邢朝洋, 罗斌, 等. 基于玻璃-硅复合基板的微系统圆片级三维封装 [J]. 导航与控制. 2019, 18(2): 61-68.

【2】Cheng H, Chen M X, Luo X B, et al. Ceramic substrate for electronic packaging [J]. Advanced Ceramics. 2019, 40(4): 265-292.
程浩, 陈明祥, 罗小兵, 等. 电子封装陶瓷基板 [J]. 现代技术陶瓷. 2019, 40(4): 265-292.

【3】Tamaki T, Watanabe W, Nishii J, et al. Welding of transparent materials using femtosecond laser pulses [J]. Japanese Journal of Applied Physics. 2005, 44(22): L687-L689.

【4】Sugioka K, Iida M, Takai H, et al. Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train [J]. Optics Letters. 2011, 36(14): 2734-2736.

【5】Wu S Z, Wu D, Xu J, et al. Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding [J]. Optics Express. 2013, 21(20): 24049-24059.

【6】Watanabe W, Onda S, Tamaki T, et al. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses [J]. Applied Physics Letters. 2006, 89(2): 021106.

【7】Ding T, Wang X H, Wang G D, et al. Welding of fused silica by using high repetition frequency femtosecond laser [J]. Chinese Journal of Lasers. 2018, 45(7): 0701007.
丁腾, 王雪辉, 王关德, 等. 高重频飞秒激光焊接石英玻璃 [J]. 中国激光. 2018, 45(7): 0701007.

【8】de Pablos-Martín A, H?che T. Laser welding of glasses using a nanosecond pulsed Nd∶YAG laser [J]. Optics and Lasers in Engineering. 2017, 90: 1-9.

【9】Xu Z J. Influence of filmthickness and silicon content to conductivity and residual stress of silicon substrate copper film [J]. Journal of Shaanxi Normal University (Natural Science Edition). 1998, 26(S1): 198-200.
徐子钧. 膜厚与硅含量对硅基铜膜的电导率和残余应力的影响 [J]. 陕西师范大学学报(自然科学版). 1998, 26(S1): 198-200.

【10】Belitzki A, Stadter C, Zaeh M F. Distortion minimization of laser beam welded components by the use of finite element simulation and artificial intelligence [J]. CIRP Journal of Manufacturing Science and Technology. 2019, 27: 11-20.

【11】Yang X Y, Yan G Z, Xiu Y F, et al. Welding temperature distribution and residual stresses in thick welded plates of SA738Gr.B through experimental measurements and finite element analysis [J]. Materials. 2019, 12(15): 2436.

【12】Kelly A, Macmillan N H. Strong solids[M]. Basel: , 1973.

引用该论文

Huang Minghe,Zhang Qingmao,Lü Qitao,Zhang Jiejuan,Guo Liang. UV-Laser Welding Process of Copper-Plated Glass[J]. Chinese Journal of Lasers, 2020, 47(10): 1002007

黄明贺,张庆茂,吕启涛,张洁娟,郭亮. 紫外激光焊接镀铜玻璃工艺的研究[J]. 中国激光, 2020, 47(10): 1002007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF