首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1522-1531)

Experimental free-space quantum secure direct communication and its security analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We report an experimental implementation of free-space quantum secure direct communication based on single photons. The quantum communication scheme uses phase encoding, and the asymmetric Mach–Zehnder interferometer is optimized so as to automatically compensate phase drift of the photons during their transitions over the free-space medium. At a 16 MHz pulse repetition frequency, an information transmission rate of 500 bps over a 10 m free space with a mean quantum bit error rate of 0.49%±0.27% is achieved. The security is analyzed under the scenario that Eve performs the collective attack for single-photon state and the photon number splitting attack for multi-photon state in the depolarizing channel. Our results show that quantum secure direct communication is feasible in free space.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.388790

所属栏目:Quantum Optics

基金项目:Government of Guangdong Province10.13039/501100002912; National Natural Science Foundation of China10.13039/501100001809; Ministry of Science and Technology of the People’s Republic of China10.13039/501100002855; Beijing Innovation Center for Future Chip10.13039/501100012282;

收稿日期:2020-01-22

录用日期:2020-06-20

网络出版日期:2020-06-22

作者单位    点击查看

Dong Pan:State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;Frontier Science Center for Quantum Information, Beijing 100084, China
Zaisheng Lin:Frontier Science Center for Quantum Information, Beijing 100084, China;School of Information Science and Technology, Tsinghua University, Beijing 100084, China;Beijing National Research Center for Information Science and Technology, Beijing 100084, China;Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Jiawei Wu:State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;Frontier Science Center for Quantum Information, Beijing 100084, China
Haoran Zhang:State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;Frontier Science Center for Quantum Information, Beijing 100084, China
Zhen Sun:Frontier Science Center for Quantum Information, Beijing 100084, China;School of Information Science and Technology, Tsinghua University, Beijing 100084, China
Dong Ruan:State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;Frontier Science Center for Quantum Information, Beijing 100084, China
Liuguo Yin:Frontier Science Center for Quantum Information, Beijing 100084, China;School of Information Science and Technology, Tsinghua University, Beijing 100084, China;Beijing National Research Center for Information Science and Technology, Beijing 100084, China;Beijing Academy of Quantum Information Sciences, Beijing 100193, China;e-mail: yinlg@tsinghua.edu.cn
Gui Lu Long:State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;Frontier Science Center for Quantum Information, Beijing 100084, China;School of Information Science and Technology, Tsinghua University, Beijing 100084, China;Beijing National Research Center for Information Science and Technology, Beijing 100084, China;Beijing Academy of Quantum Information Sciences, Beijing 100193, China;e-mail: gllong@tsinghua.edu.cn

联系人作者:Liuguo Yin(yinlg@tsinghua.edu.cn); Gui Lu Long(gllong@tsinghua.edu.cn);

备注:Government of Guangdong Province10.13039/501100002912; National Natural Science Foundation of China10.13039/501100001809; Ministry of Science and Technology of the People’s Republic of China10.13039/501100002855; Beijing Innovation Center for Future Chip10.13039/501100012282;

【1】H. Sun, S. Liu, W. Lin, K. Y. Zhang, W. Lv, X. Huang, F. Huo, H. Yang, G. Jenkins, Q. Zhao and W. Huang. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5, (2014).

【2】S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W.-W. Xiong, L. Li, Z. An and W. Huang. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater. 29, (2017).

【3】C. H. Bennett and G. Brassard. Quantum cryptography: public key distribution and coin tossing. IEEE International Conference on Computers, Systems, and Signal Processing. : IEEE, 175-179(1984).

【4】S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo and Z.-F. Han. Field test of wavelength-saving quantum key distribution network. Opt. Lett. 35, 2454-2456(2010).

【5】M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. L?nger, M. Peev and A. Zeilinger. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express. 19, 10387-10409(2011).

【6】S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo and Z.-F. Han. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express. 22, 21739-21756(2014).

【7】H.-Y. Liu, X.-H. Tian, C. Gu, P. Fan, X. Ni, R. Yang, J.-N. Zhang, M. Hu, J. Guo, X. Cao, X. Hu, G. Zhao, Y.-Q. Lu, Y.-X. Gong, Z. Xie and S.-N. Zhu. Drone-based entanglement distribution towards mobile quantum networks. Natl. Sci. Rev. 7, 921-928(2020).

【8】W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson and C. M. Simmons. Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283-3286(1998).

【9】J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, C. J. Williams, E. W. Hagley and J. Wen. Quantum key distribution with 1.25 Gbps clock synchronization. Opt. Express. 12, 2011-2016(2004).

【10】T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger and H. Weinfurter. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, (2007).

【11】R. Tannous, Z. Ye, J. Jin, K. B. Kuntz, N. Lütkenhaus and T. Jennewein. Demonstration of a 6 state-4 state reference frame independent channel for quantum key distribution. Appl. Phys. Lett. 115, (2019).

【12】S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang and J.-W. Pan. Satellite-to-ground quantum key distribution. Nature. 549, 43-47(2017).

【13】G.-L. Long and X.-S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, (2002).

【14】F.-G. Deng, G. L. Long and X.-S. Liu. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, (2003).

【15】F.-G. Deng and G. L. Long. Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69, (2004).

【16】C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu and G. L. Long. Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, (2005).

【17】J.-Y. Hu, B. Yu, M.-Y. Jing, L.-T. Xiao, S.-T. Jia, G.-Q. Qin and G.-L. Long. Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, (2016).

【18】W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi and G.-C. Guo. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, (2017).

【19】F. Zhu, W. Zhang, Y. Sheng and Y. Huang. Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519-1524(2017).

【20】R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin and G.-L. Long. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, (2019).

【21】A. M. Marino and C. Stroud. Deterministic secure communications using two-mode squeezed states. Phys. Rev. A. 74, (2006).

【22】J. H. Shapiro, Z. Zhang and F. N. Wong. Secure communication via quantum illumination. Quantum Inf. Process. 13, 2171-2193(2014).

【23】S. Pirandola, S. L. Braunstein, S. Mancini and S. Lloyd. Quantum direct communication with continuous variables. Europhys. Lett. 84, (2008).

【24】S. Pirandola, S. L. Braunstein, S. Lloyd and S. Mancini. Confidential direct communications: a quantum approach using continuous variables. IEEE J. Sel. Top. Quantum Electron. 15, 1570-1580(2009).

【25】D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. W. Nam, C. Lupo and S. Lloyd. Quantum enigma machine: experimentally demonstrating quantum data locking. Phys. Rev. A. 94, (2016).

【26】Z.-R. Zhou, Y.-B. Sheng, P.-H. Niu, L.-G. Yin, G.-L. Long and L. Hanzo. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, (2020).

【27】P.-H. Niu, Z.-R. Zhou, Z.-S. Lin, Y.-B. Sheng, L.-G. Yin and G.-L. Long. Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345-1350(2018).

【28】Z. Gao, T. Li and Z. Li. Long-distance measurement-device-independent quantum secure direct communication. Europhys. Lett. 125, (2019).

【29】L. Zhou, Y.-B. Sheng and G.-L. Long. Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12-20(2019).

【30】D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill. Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325-360(2004).

【31】W.-Y. HwangW.-Y. Hwang. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, (2003).

【32】X.-B. WangX.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, (2005).

【33】H.-K. Lo, X. Ma and K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett. 94, (2005).

【34】F.-G. Deng and G. L. Long. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A. 70, (2004).

【35】M. Lucamarini and S. Mancini. Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, (2005).

【36】H. LuH. Lu. Ambiguous discrimination among linearly dependent quantum states and its application to two-way deterministic quantum key distribution. J. Opt. Soc. Am. B. 36, B26-B30(2019).

【37】Q. Zhou, R. Valivarthi, C. John and W. Tittel. Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1, (2019).

【38】A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden and N. Gisin. ‘Plug and play’ systems for quantum cryptography. Appl. Phys. Lett. 70, 793-795(1997).

【39】S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, C. Hui, P.-L. Hao, G.-J. Fan-Yuan, C. Wang, L.-J. Zhang, J. Kuang, S.-F. Liu, Z. Zhou, Y.-G. Wang, G.-C. Guo and Z.-F. Han. Practical gigahertz quantum key distribution robust against channel disturbance. Opt. Lett. 43, 2030-2033(2018).

【40】A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin and J.-M. Merolla. Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory. 53, 2933-2945(2007).

【41】A. D. WynerA. D. Wyner. The wire-tap channel. Bell System Tech. J. 54, 1355-1387(1975).

【42】M. Tomamichel, C. C. W. Lim, N. Gisin and R. Renner. Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, (2012).

【43】H. Lu, C.-H. F. Fung, X. Ma and Q.-Y. Cai. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys. Rev. A. 84, (2011).

【44】C. I. Henao and R. M. Serra. Practical security analysis of two-way quantum-key-distribution protocols based on nonorthogonal states. Phys. Rev. A. 92, (2015).

【45】J. Wu, Z. Lin, L. Yin and G.-L. Long. Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, (2019).

【46】Y. Feng, R. Duan and M. Ying. Unambiguous discrimination between mixed quantum states. Phys. Rev. A. 70, (2004).

【47】A. S. HolevoA. S. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Trans. 9, 177-183(1973).

【48】R. Jozsa and J. Schlienz. Distinguishability of states and von Neumann entropy. Phys. Rev. A. 62, (2000).

【49】W. O. KrawecW. O. Krawec. Quantum key distribution with mismatched measurements over arbitrary channels. Quantum Inf. Comput. 17, 209-241(2017).

【50】M. Christandl, R. Renner and A. Ekert. A generic security proof for quantum key distribution. (2004).

【51】V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Du?ek, N. Lütkenhaus and M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301-1350(2009).

【52】X. Ma, B. Qi, Y. Zhao and H.-K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A. 72, (2005).

【53】X. Ma and H.-K. Lo. Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10, (2008).

【54】D. J. C. MacKayD. J. C. MacKay. Information Theory, Inference and Learning Algorithms. : Cambridge University, (2003).

【55】S. Zhang and M. Ying. Set discrimination of quantum states. Phys. Rev. A. 65, (2002).

【56】S. Lin, Q.-Y. Wen, F. Gao and F.-C. Zhu. Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A. 79, (2009).

【57】V. Scarani, A. Acin, G. Ribordy and N. Gisin. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, (2004).

【58】C.-H. F. Fung, K. Tamaki and H.-K. Lo. Performance of two quantum-key-distribution protocols. Phys. Rev. A. 73, (2006).

【59】S. L. Zhang, X. Zou, K. Li, C. Jin and G. C. Guo. Limitation of decoy-state Scarani-Acin-Ribordy-Gisin quantum-key-distribution protocols with a heralded single-photon source. Phys. Rev. A. 76, (2007).

【60】J.-B. Li and X.-M. Fang. Nonorthogonal decoy-state quantum key distribution. Chin. Phys. Lett. 23, 768-775(2006).

【61】I. I. Kim and E. J. Korevaar. Availability of free-space optics (FSO) and hybrid FSO/RF systems. Proc. SPIE. 4530, 84-95(2001).

【62】A. Carrasco-Casado, N. Denisenko and V. Fernandez. Correction of beam wander for a free-space quantum key distribution system operating in urban environment. Opt. Eng. 53, (2014).

【63】O. Elmabrok and M. Razavi. Wireless quantum key distribution in indoor environments. J. Opt. Soc. Am. B. 35, 197-207(2018).

引用该论文

Dong Pan, Zaisheng Lin, Jiawei Wu, Haoran Zhang, Zhen Sun, Dong Ruan, Liuguo Yin, and Gui Lu Long, "Experimental free-space quantum secure direct communication and its security analysis," Photonics Research 8(9), 1522-1531 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF