首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1506-1511)

Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Nano-kirigami enables direct and versatile shape transformations from two-dimensional predesigns to three-dimensional (3D) architectures in microscale/nanoscale. Here a new and extensible strategy for cascaded multilayer nano-kirigami is demonstrated in a gold/silicon nitride (Au/SiN) bilayer nanofilm for 3D nanofabrication and visible light manipulation. By employing a focused ion-beam-based Boolean irradiation, rich 3D shape transformation and nested multilayer nanostructures are precisely manufactured, which are well reproduced by developing a modified mechanical model. Based on the multilayer and deformable features of the nano-kirigami structures, potentials in manipulating the phase and intensity of visible light are explored. The developed new nano-kirigami strategies, as well as the novel exotic 3D nanostructures, could be helpful to build a novel platform for 3D nanofabrication and find potential applications in microelectromechanical/nanoelectromechanical systems, holographic display, plasmonics, nanophotonics, biophotonics, etc.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.398467

所属栏目:Nanophotonics and Photonic Crystals

基金项目:National Natural Science Foundation of China10.13039/501100001809; National Key Research and Development Program of China10.13039/501100012166; Natural Science Foundation of Beijing Municipality10.13039/501100004826; Beijing Outstanding Young Scientist Program;

收稿日期:2020-05-25

录用日期:2020-07-16

网络出版日期:2020-07-17

作者单位    点击查看

Yu Han:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China;Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Zhiguang Liu:Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Shanshan Chen:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
Juan Liu:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;e-mail: juanliu@bit.edu.cn
Yongtian Wang:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Jiafang Li:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China;Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;e-mail: jiafangli@bit.edu.cn

联系人作者:Juan Liu(juanliu@bit.edu.cn); Jiafang Li(jiafangli@bit.edu.cn);

备注:National Natural Science Foundation of China10.13039/501100001809; National Key Research and Development Program of China10.13039/501100012166; Natural Science Foundation of Beijing Municipality10.13039/501100004826; Beijing Outstanding Young Scientist Program;

【1】R. Syms and E. Yeatman. Self-assembly of three-dimensional microstructures using rotation by surface tension forces. Electron. Lett. 29, 662-664(1993).

【2】F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder and J. W. Perry. Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv. Mater. 14, 194-198(2002).

【3】F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc and E. Di Fabrizio. Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale. 3, 2689-2696(2011).

【4】Y. Hong, D. Zhao, D. L. Liu, B. Z. Ma, G. N. Yao, Q. Li, A. P. Han and M. Qiu. Three-dimensional in situ electron-beam lithography using water ice. Nano Lett. 18, 5036-5041(2018).

【5】J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden and M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science. 325, 1513-1515(2009).

【6】S. Chen, J. Chen, X. Zhang, Z.-Y. Li and J. Li. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with ‘folding’. Light Sci. Appl. 9, (2020).

【7】J. Rogers, Y. G. Huang, O. G. Schmidt and D. H. Gracias. Origami MEMS and NEMS. Mrs Bull. 41, 123-129(2016).

【8】K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito and M. Sasaki. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A. 419, 131-137(2006).

【9】C. Yang, H. Zhang, Y. D. Liu, Z. L. Yu, X. D. Wei and Y. F. Hu. Kirigami-inspired deformable 3D structures conformable to curved biological surface. Adv. Sci. 5, (2018).

【10】A. Lamoureux, K. Lee, M. Shlian, S. R. Forrest and M. Shtein. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, (2015).

【11】M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller and P. L. McEuen. Graphene kirigami. Nature. 524, 204-207(2015).

【12】Z. J. Wang, L. Q. Jing, K. Yao, Y. H. Yang, B. Zheng, C. M. Soukoulis, H. S. Chen and Y. M. Liu. Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater. 29, (2017).

【13】J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo and I. Cohen. Using origami design principles to fold reprogrammable mechanical metamaterials. Science. 345, 647-650(2014).

【14】Y. S. Guan, Z. L. Zhang, Y. C. Tang, J. Yin and S. Q. Ren. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 30, (2018).

【15】L. Z. Xu, T. C. Shyu and N. A. Kotov. Origami and kirigami nanocomposites. ACS Nano. 11, 7587-7599(2017).

【16】W. J. Choi, G. Cheng, Z. Y. Huang, S. Zhang, T. B. Norris and N. A. Kotov. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820-826(2019).

【17】M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk and M. Gu. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics. 7, 801-805(2013).

【18】C. Q. Zheng, Y. Shen, M. K. Liu, W. J. Liu, S. Y. Wu and C. J. Jin. Layer-by-layer assembly of three dimensional optical functional nanostructures. ACS Nano. 13, 5583-5590(2019).

【19】Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li and N. X. Fang. Nano-kirigami with giant optical chirality. Sci. Adv. 4, (2018).

【20】A. J. Cui, Z. Liu, J. F. Li, T. H. H. Shen, X. X. Xia, Z. Y. Li, Z. J. Gong, H. Q. Li, B. L. Wang, J. J. Li, H. F. Yang, W. X. Li and C. Z. Gu. Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances. Light Sci. Appl. 4, (2015).

【21】M. L. Tseng, Z. H. Lin, H. Y. Kuo, T. T. Huang, Y. T. Huang, T. L. Chung, C. H. Chu, J. S. Huang and D. P. Tsai. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality. Adv. Opt. Mater. 7, (2019).

【22】W. J. Arora, H. I. Smith and G. Barbastathis. Membrane folding by ion implantation induced stress to fabricate three-dimensional nanostructures. Microelectron. Eng. 84, 1454-1458(2007).

【23】C. L. Wu, F. C. Li, C. W. Pao and D. J. Srolovitz. Folding sheets with ion beams. Nano Lett. 17, 249-254(2017).

【24】W. D. Nix and B. M. Clemens. Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467-3473(1999).

【25】M. J. Samayoa, M. A. Haque and P. H. Cohen. Focused ion beam irradiation effects on nanoscale freestanding thin films. J. Micromech. Microeng. 18, (2008).

【26】A. Battiato, M. Lorusso, E. Bernardi, F. Picollo, F. Bosia, D. Ugues, A. Zelferino, A. Damin, J. Baima, N. M. Pugno, E. P. Ambrosio and P. Olivero. Softening the ultra-stiff: controlled variation of Young’s modulus in single-crystal diamond by ion implantation. Acta Mater. 116, 95-103(2016).

【27】S. Chen, Z. Liu, H. Du, C. Tang, C. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang and J. Li. Electromechanically reconfigurable optical nano-kirigami. Nat. Commun. (0).

【28】Z. G. Liu, Y. Xu, C. Y. Ji, S. S. Chen, X. P. Li, X. D. Zhang, Y. G. Yao and J. F. Li. Fano-enhanced circular dichroism in deformable stereo metasurfaces. Adv. Mater. 32, (2020).

引用该论文

Yu Han, Zhiguang Liu, Shanshan Chen, Juan Liu, Yongtian Wang, and Jiafang Li, "Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation," Photonics Research 8(9), 1506-1511 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF