首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701011--1)

半导体微纳米线激光器研究进展 (特邀综述)

Research Progress on Semiconductor Micro/Nanowire Lasers (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

半导体微纳米线激光器可作为集成的相干光源,在光通信、光计算、传感器、生物学研究等领域有着广泛的应用前景。介绍了国内外在实现半导体微纳米线激光器波长可调谐及单模激射方面的研究进展。讨论了基于光子-激子强耦合效应的激子极化激元Bose-Einstein凝聚现象,为发展低激射阈值微纳米线激光器提供了新的途径。简述了基于激子极化激元的新型激光器的工作原理和新进展。

Abstract

Semiconductor micro/nanowire lasers can be used as integrated coherent light sources. Further, they can be extensively applied in various fields, including optical communication, optical computing, sensors, and biological studies. In this study, we review the domestic and international research progress on wavelength tuning and single-mode lasing of the semiconductor micro/nanowire lasers. Moreover, the Bose-Einstein condensation phenomenon of exciton-polariton based on the strong photon-exciton coupling effect is introduced as a new method to develop micro/nanowire lasers with low lasing thresholds. In addition, the operating mechanism of new lasers based on exciton-polariton and new achievements are presented.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.0701011

所属栏目:“半导体激光器”专题

基金项目:国家自然科学基金、国家重点研发计划;

收稿日期:2020-03-05

修改稿日期:2020-04-30

网络出版日期:2020-07-01

作者单位    点击查看

于果:北京大学物理学院, 北京 100871北京大学人工微结构和介观物理国家重点实验室, 北京 100871
李俊超:北京大学物理学院, 北京 100871北京大学人工微结构和介观物理国家重点实验室, 北京 100871
温培钧:北京大学物理学院, 北京 100871北京大学人工微结构和介观物理国家重点实验室, 北京 100871
胡晓东:北京大学物理学院, 北京 100871北京大学人工微结构和介观物理国家重点实验室, 北京 100871

联系人作者:胡晓东(huxd@pku.edu.cn)

备注:国家自然科学基金、国家重点研发计划;

【1】Dong Y J, Tian B Z, Kempa T J, et al. Coaxial group III-nitride nanowire photovoltaics [J]. Nano Letters. 2009, 9(5): 2183-2187.

【2】Wanekaya A K, Chen W, Myung N V, et al. Nanowire-based electrochemical biosensors [J]. Electroanalysis. 2006, 18(6): 533-550.

【3】Huang Y, Duan X F, Lieber C M. Nanowires for integrated multicolor nanophotonics [J]. Small. 2005, 1(1): 142-147.

【4】Yan R X, Gargas D, Yang P D. Nanowire photonics [J]. Nature Photonics. 2009, 3(10): 569-576.

【5】Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth [J]. Applied Physics Letters. 1964, 4(5): 89-90.

【6】Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science. 1998, 279(5348): 208-211.

【7】Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth [J]. Journal of the American Chemical Society. 2001, 123(13): 3165-3166.

【8】Yang P D, Lieber C M. Nanorod-superconductor composites: a pathway to materials with high critical current densities [J]. Science. 1996, 273(5283): 1836-1840.

【9】Bj?rk M T, Ohlsson B J, Sass T, et al. One-dimensional heterostructures in semiconductor nanowhiskers [J]. Applied Physics Letters. 2002, 80(6): 1058-1060.

【10】Bao X Y, Soci C, Susac D, et al. Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition [J]. Nano Letters. 2008, 8(11): 3755-3760.

【11】Zubia D, Hersee S D. Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials [J]. Journal of Applied Physics. 1999, 85(9): 6492-6496.

【12】Smith P A, Nordquist C D, Jackson T N, et al. Electric-field assisted assembly and alignment of metallic nanowires [J]. Applied Physics Letters. 2000, 77(9): 1399-1401.

【13】Tao A R, Huang J X, Yang P D. Langmuir-Blodgettry of nanocrystals and nanowires [J]. Accounts of Chemical Research. 2008, 41(12): 1662-1673.

【14】Yang P D. Wires on water [J]. Nature. 2003, 425(6955): 243-244.

【15】Huang Y, Duan X, Wei Q, et al. Directed assembly of one-dimensional nanostructures into functional networks [J]. Science. 2001, 291(5504): 630-633.

【16】Messer B, Song J H, Yang P D. Microchannel networks for nanowire patterning [J]. Journal of the American Chemical Society. 2000, 122(41): 10232-10233.

【17】Ahn J H, Kim H S, Lee K J, et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J]. Science. 2006, 314(5806): 1754-1757.

【18】Pauzauskie P J, Radenovic A, Trepagnier E, et al. Optical trapping and integration of semiconductor nanowire assemblies in water [J]. Nature Materials. 2006, 5(2): 97-101.

【19】Zhu C J, Song W Z, Qu M, et al. Thermal analysis and trapping properties of silicon-based optical nanotweezer structures [J]. Acta Optica Sinica. 2019, 39(3): 0324002.
朱晨俊, 宋五洲, 屈铭, 等. 硅基纳米光镊结构的热分析和捕获特性 [J]. 光学学报. 2019, 39(3): 0324002.

【20】Li S F, Waag A. GaN based nanorods for solid state lighting [J]. Journal of Applied Physics. 2012, 111(7): 071101.

【21】Choi J H, No Y S, So J P, et al. A high-resolution strain-gauge nanolaser [J]. Nature Communications. 2016, 7: 11569.

【22】Buus J, Murphy E J. Tunable lasers in optical networks [J]. Journal of Lightwave Technology. 2006, 24(1): 5-11.

【23】Coldren L A, Fish G A, Akulova Y, et al. Tunable semiconductor lasers: a tutorial [J]. Journal of Lightwave Technology. 2004, 22(1): 193-202.

【24】H?nsch T W, Shahin I S, Schawlow A L. High-resolution saturation spectroscopy of the sodium D lines with a pulsed tunable dye laser [J]. Physical Review Letters. 1971, 27(11): 707-710.

【25】Pascu M L, Moise N, Staicu A. Tunable dye laser applications in environment pollution monitoring [J]. Journal of Molecular Structure. 2001, 598(1): 57-64.

【26】Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser [J]. Physical Review Letters. 2006, 96(14): 143903.

【27】Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids [J]. Physical Review. 1953, 92(5): 1324.

【28】Tang H, Lévy F, Berger H, et al. Urbach tail of anatase TiO2 [J]. Physical Review B. 1995, 52(11): 7771-7774.

【29】Liu X, Zhang Q, Xiong Q, et al. Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption [J]. Nano Letters. 2013, 13(3): 1080-1085.

【30】Li J, Meng C, Liu Y, et al. Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process [J]. Advanced Materials. 2013, 25(6): 832-837.

【31】Pan A, Liu D, Liu R, et al. Optical waveguide through CdS nanoribbons [J]. Small. 2005, 1(10): 980-983.

【32】Xu J, Zhuang X, Guo P, et al. Asymmetric light propagation in composition-graded semiconductor nanowires [J]. Scientific Reports. 2012, 2: 820.

【33】Yang Z Y, Wang D L, Meng C, et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires [J]. Nano Letters. 2014, 14(6): 3153-3159.

【34】Zong H, Yang Y, Ma C, et al. Flexibly and repeatedly modulating lasing wavelengths in a single core-shell semiconductor microrod [J]. ACS Nano. 2017, 11(6): 5808-5814.

【35】Chu S, Wang G P, Zhou W H, et al. Electrically pumped waveguide lasing from ZnO nanowires [J]. Nature Nanotechnology. 2011, 6(8): 506-510.

【36】Huang J, Chu S, Kong J Y, et al. ZnO p-n homojunction random laser diode based on nitrogen-doped p-type nanowires [J]. Advanced Optical Materials. 2013, 1(2): 179-185.

【37】Zhao S, Liu X H, Wu Y, et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature [J]. Applied Physics Letters. 2016, 109(19): 191106.

【38】Liu C H, Xu H X, Ma J S, et al. Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires [J]. Applied Physics Letters. 2011, 99(6): 063115.

【39】Wang R J, Liu X D, Shih I, et al. High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si [J]. Applied Physics Letters. 2015, 106(26): 261104.

【40】Koblmüller G, Mayer B, Stettner T, et al. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review [J]. Semiconductor Science and Technology. 2017, 32(5): 053001.

【41】Nami M, Stricklin I E. DaVico K M, et al. Carrier dynamics and electro-optical characterization of high-performance GaN/InGaN core-shell nanowire light-emitting diodes [J]. Scientific Reports. 2018, 8(1): 1-11.

【42】Liu X F, Zhang Q, Yip J N, et al. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect [J]. Nano Letters. 2013, 13(11): 5336-5343.

【43】Li Q M, Wright J B, Chow W W, et al. Single-mode GaN nanowire lasers [J]. Optics Express. 2012, 20(16): 17873-17879.

【44】Xu H W, Wright J B, Hurtado A, et al. Gold substrate-induced single-mode lasing of GaN nanowires [J]. Applied Physics Letters. 2012, 101(22): 221114.

【45】Wang Y Y, Xu C X, Jiang M M, et al. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect [J]. Nanoscale. 2016, 8(37): 16631-16639.

【46】Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid [J]. Physical Review. 1946, 69: 37-38.

【47】Yang Y, Zong H, Ma C, et al. Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing [J]. Optics Express. 2017, 25(18): 21025-21036.

【48】Scofield A C, Kim S H, Shapiro J N, et al. Bottom-up photonic crystal lasers [J]. Nano Letters. 2011, 11(12): 5387-5390.

【49】Xiao Y, Meng C, Wang P, et al. Single-nanowire single-mode laser [J]. Nano Letters. 2011, 11(3): 1122-1126.

【50】Yang Y, Wei T T, Zhu R, et al. Tunable single-mode lasing in a single semiconductor microrod [J]. Optics Express. 2018, 26(23): 30021-30029.

【51】Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing [J]. Nano Letters. 2014, 14(8): 4381-4388.

【52】Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors [J]. Laser & Optoelectronics Progress. 2019, 56(20): 202407.
徐娅, 边捷, 张伟华. 局域表面等离激元纳米光学传感器的原理与进展 [J]. 激光与光电子学进展. 2019, 56(20): 202407.

【53】Jayaprakash R, Kalaitzakis F G, Christmann G, et al. Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap [J]. Scientific Reports. 2017, 7(1): 5542.

【54】Deveaud B. Exciton-polariton Bose-Einstein condensates [J]. Annual Review of Condensed Matter Physics. 2015, 6(1): 155-175.

【55】Gérard J, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities [J]. Journal of Lightwave Technology. 1999, 17(11): 2089-2095.

【56】Vahala K J. Optical microcavities [J]. Nature. 2003, 424(6950): 839-846.

【57】Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser [J]. Proceedings of the IEEE. 1963, 51(1): 89-109.

【58】Khitrova G, Gibbs H M, Kira M, et al. Vacuum Rabi splitting in semiconductors [J]. Nature Physics. 2006, 2(2): 81-90.

【59】Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation [J]. Reviews of Modern Physics. 2010, 82(2): 1489-1537.

【60】Byrnes T, Kim N Y, Yamamoto Y. Exciton-polariton condensates [J]. Nature Physics. 2014, 10(11): 803-813.

【61】Laussy F P, Malpuech G, Kavokin A V, et al. Spontaneous coherence buildup in polariton lasers [J]. Solid State Communications. 2005, 134(1): 121-125.

【62】Guillet T, Brimont C. Polariton condensates at room temperature [J]. Comptes Rendus Physique. 2016, 17(8): 946-956.

【63】Das A, Heo J, Jankowski M, et al. Room temperature ultralow threshold GaN nanowire polariton laser [J]. Physical Review Letters. 2011, 107(6): 066405.

【64】Das A, Bhattacharya P, Banerjee A, et al. Dynamic polariton condensation in a single GaN nanowire-dielectric microcavity [J]. Physical Review B. 2012, 85(19): 195321.

【65】Heo J, Jahangir S, Xiao B, et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity [J]. Nano Letters. 2013, 13(6): 2376-2380.

【66】Trichet A A P, Médard F, Zunigaperez J, et al. From strong to weak coupling regime in a single GaN microwire up to room temperature [J]. New Journal of Physics. 2012, 14(7): 073004.

【67】Gong S H, Ko S M, Jang M H, et al. Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire [J]. Nano Letters. 2015, 15(7): 4517-4524.

【68】Hu Y, Li H L, Wang D K, et al. Surface modification and optical properties of ZnO nanowires [J]. Chinese Journal of Lasers. 2018, 45(10): 1003002.
胡颖, 李浩林, 王登魁, 等. ZnO纳米线表面改性及其光学性质 [J]. 中国激光. 2018, 45(10): 1003002.

【69】Xu D, Xie W, Liu W H, et al. Polariton lasing in a ZnO microwire above 450 K [J]. Applied Physics Letters. 2014, 104(8): 082101.

【70】Bhattacharya P, Xiao B, Das A, et al. Solid state electrically injected exciton-polariton laser [J]. Physical Review Letters. 2013, 110(20): 206403.

【71】Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser [J]. Nature. 2013, 497(7449): 348-352.

【72】Bhattacharya P, Frost T, Deshpande S, et al. Room temperature electrically injected polariton laser [J]. Physical Review Letters. 2014, 112(23): 236802.

引用该论文

Yu Guo,Li Junchao,Wen Peijun,Hu Xiaodong. Research Progress on Semiconductor Micro/Nanowire Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701011

于果,李俊超,温培钧,胡晓东. 半导体微纳米线激光器研究进展[J]. 中国激光, 2020, 47(7): 0701011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF