首页 > 论文 > Chinese Optics Letters > 19卷 > 1期(p:011701)

Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In this study, the effects of purification, dehydration, and coagulation processes on the absorption and reduced scattering coefficients of chicken liver tissues have been investigated by using a single integrating sphere system. The purification process performed on the tissue samples to remove blood residue has been found to cause a slight change in the optical parameters. Although the dehydration process brings about an increase in the absorption coefficient due to the water loss, no direct relationship has been observed between the reduced scattering coefficient and the dehydration level of the tissue. In addition, it has been observed that there was a relatively small increase in the absorption coefficient and a significant increase in the reduced scattering coefficient after the coagulation process. Therefore, it can be said that the optical penetration depth decreased significantly after dehydration and coagulation processes unlike blood purification. Moreover, fluence rate distributions inside the fresh, blood purified, dehydrated, and coagulated tissue models have been investigated by using the Monte Carlo modeling of photon transport in multilayered tissues simulation code.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.3788/COL202119.011701

所属栏目:Biophotonics

基金项目:This work was supported by the Scientific and Technological Research Council of Turkey, TUBITAK 3501 (Project No. 118E235).

收稿日期:2020-07-02

录用日期:2020-08-28

网络出版日期:2020-11-24

作者单位    点击查看

Halil Arslan:Faculty of Technology, Electrical and Electronics Engineering Department, Sakarya University of Applied Sciences, Sakarya, Turkey
Bahar Pehlivanoz:Faculty of Technology, Electrical and Electronics Engineering Department, Sakarya University of Applied Sciences, Sakarya, Turkey

联系人作者:Halil Arslan(harslan@sakarya.edu.tr)

备注:This work was supported by the Scientific and Technological Research Council of Turkey, TUBITAK 3501 (Project No. 118E235).

【1】S. L. JacquesS. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, (2013).

【2】V. TuchinV. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. (2007).

【3】M. H. NiemzM. H. Niemz. Laser-Tissue Interactions: Fundamentals and Applications. : Springer, (2007).

【4】B. C. Wilson and G. Adam. A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys. 10, (1983).

【5】S. A. Prahl, M. Keijzer, S. L. Jacques and A. J. Welch. A Monte Carlo model of light propagation in tissue. SPIE Inst. Ser. IS 5, (1989).

【6】A. N. Bashkatov, E. A. Genina, V. I. Kochubey and V. V. Tuchin. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys. 38, (2005).

【7】S. C. Gebhart, W. C. Lin and A. Mahadevan-Jansen. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys. Med. Biol. 51, (2006).

【8】D. F. SwinehartD. F. Swinehart. The Beer–Lambert law. J. Chem. Educ. 39, (1962).

【9】J. W. Pickering, S. A. Prahl, Niek van Wieringen, J. F. Beek, H. J. C. M. Sterenborg and M. J. C. van Gemert. Double-integrating-sphere system for measuring the optical properties of tissue. Appl. Opt. 32, (1993).

【10】G. D. Vries, J. F. Beek, G. W. Lucassen and M. J. C. V. Gemert. The effect of light losses in double integrating spheres on optical properties estimation. IEEE J. Select. Top. Quantum Electron. 5, (1993).

【11】P. Kubelka and F. Munk. Ein Beitrag Zur Optik Der Farbanstriche. Zeitschrift für Technische Physik. 12, (1931).

【12】O. Hamdy, M. Fathy, T. A. Al-Saeed, J. El-Azab and N. H. Solouma. Estimation of optical parameters and fluence rate distribution in biological tissues via a single integrating sphere optical setup. Optik. 140, (2017).

【13】G. M. Palmer and N. Ramanujam. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: theory and validation on synthetic phantoms. Appl. Opt. 45, (2006).

【14】J. L. Karagiannes, Z. Zhang, B. Grossweiner and L. I. Grossweiner. Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms. Appl. Opt. 28, (1989).

【15】W. M. Star, J. P. A. Marijnissen and M. J. C. van Gemert. Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory. Phys. Med. Biol. 33, (1988).

【16】N. Honda, T. Nanjo, K. Ishii and K. Awazu. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm. Proc. SPIE. 8221, (2012).

【17】C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller and H. J. Buhr. Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared rangelasers in surgery and medicine. Lasers Surg. Med. 23, (1998).

【18】A. F. Kamanli, M. Z. Yildiz, H. Arslan, G. ?etinel, N. K. Lim and H. S. Lim. Development of a new multi-mode NIR laser system for photodynamic therapy. Opt. Laser Technol. 128, (2020).

【19】R.M. Szeimies, C. Abels, C. Fritsch, S. Karrer, P. Steinbach, W. B?umler, G. Goerz, A.E. Goetz and M. Landthaler. Wavelength dependency of photodynamic effects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J. Invest. Dermatol. 105, (1995).

【20】H. Arslan and Y. B. Dolukan. Optical penetration depths and fluence distributions in chicken breast and liver tissues. Opt. Spectrosc. 127, 763-768(2019).

【21】A. Roggan, D. Sch?del, U. Netz, J. P. Ritz, C. T. Germer and G. Müller. The effect of preparation technique on the optical parameters of biological tissue. Appl. Phys. B. 69, (1999).

【22】S. A. Prahl, M. J. C. Van Gemert and A. J. Welch. Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt. 32, (1993).

【23】F. P. Bolin, L. E. Preuss, R. C. Taylor and R. J. Ference. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 28, (1989).

【24】O. Hamdy, J. El-Azab, T. A. Al-Saeed, M. F. Hassan and N. H. Solouma. A method for medical diagnosis based on optical fluence rate distribution at tissue surface. Materials. 10, (2017).

【25】R. Splinter, W. F. Cheong, M. J. C. van Gemert and A. J. Welch. In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm. Lasers Surg. Med. 9, (1989).

【26】D. J. Maitland, J. T. Walsh and J. B. Prystowsky. Optical properties of human gallbladder tissue and bile. Appl. Opt. 32, (1993).

【27】D. Zhu, Q. Luo and J. Cen. Effects of dehydration on the optical properties of in vitro porcine liver. Lasers Surg. Med. 33, (2003).

【28】S. Rastegar and M. Motamedi. A theoretical analysis of dynamic variation of temperature dependent optical properties in the response of laser irradiated tissue. Proc. SPIE. 1202, (1990).

【29】H. Ao, D. Xing, H. Wei, H. Gu, G. Wu and J. Lu. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm. Phys. Med. Biol. 53, (2008).

【30】L. Wang, S. L. Jacques and L. Zheng. Determination of fluence rate distribution in a multilayered skin tissue model by using Monte Carlo simulations. Comput. Methods Prog. Biomed. 47, (1995).

【31】H. Arslan and B. Pehlivanoz. Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta. Turk. J. Phys. 43, (2019).

【32】I. F. ?ilesiz and A. J. Welch. Optical properties of normal and thermally coagulated chicken liver tissue measured ex-vivo with diffuse reflectance. Appl. Opt. 32, (1993).

【33】M. Atif, S. Firdous, M. S. Mehmood, M. Y. Hamza, M. Imran, G. Hussain and M. Ikram. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Opt. Spectrosc. 110, (2011).

引用该论文

Halil Arslan, Bahar Pehlivanoz, "Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues," Chinese Optics Letters 19(1), 011701 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF