首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:151504--1)

基于同心圆标志的空间平面夹角测量

Measurement of Space Plane Angle Based on Concentric Circle Mark

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实时准确地测量两平面之间的夹角值,根据射影变换原理,提出一种基于同心圆标志的空间平面夹角测量的方法。首先拟合出获取的图像中同心圆标志对应的曲线方程;再依据交比不变及调和比原理,先计算多个消隐点,拟合出同心圆所在平面的消隐线方程,以此确定两平面法线的消隐点;最后,结合已知的相机内部参数解算出两法线间的夹角值,对其取补即可得到两平面间的夹角值。仿真结果说明该方法真实可行。真实图像实验表明,该方法测量的绝对误差小于1°,相对误差不超过1%。该方法仅需已知相机内部参数,对同心圆标志尺寸及拍照位置无特殊要求,具有较高的灵活性,能为夹角测量提供便捷高效的技术方案。

Abstract

This study proposes a method for the accurate and real-time measurement of the angle between two planes based on the concentric circle mark and the principle of projective transformation. First, the curve equation corresponding to the concentric circle mark in the obtained image is fitted. Second, several vanishing points are calculated according to the invariant cross and harmonic ratios. The vanishing line equation of the plane, where the concentric circles are located, is fitted to determine the vanishing points of the two plane normals. Third, the angle between the two normals is calculated by combining known camera internal parameters. The angle between the two planes is the supplementary angle. The simulation results show that the method is feasible. The actual image experiments show that the absolute error is less than 1°, while the relative error is less than 1%. This method requires only the internal parameters of the camera and has no special requirements for the size of the concentric circle mark and shoot angle. Moreover, the method has high flexibility and can provide a convenient and efficient scheme for the space angle measurement.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.151504

所属栏目:机器视觉

基金项目:安徽省重点研究与开发计划(1804a09020009)、过程装备与控制工程四川省高校重点实验室开放基金(GK201819、GK201714、GK201613)、安徽省仿真设计与现代制造工程技术研究中心开放研究项目(SGCZXYB1806)、安徽建筑大学引进人才及博士启动基金(2018QD38);

收稿日期:2019-01-25

修改稿日期:2019-03-11

网络出版日期:2019-08-01

作者单位    点击查看

雷经发:安徽建筑大学机械与电气工程学院, 安徽 合肥 230601过程装备与控制工程四川省高校重点实验室, 四川 自贡 643000
陈志强:安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
张淼:安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
李永玲:安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
孙虹:安徽建筑大学机械与电气工程学院, 安徽 合肥 230601过程装备与控制工程四川省高校重点实验室, 四川 自贡 643000

联系人作者:张淼(hfutzm@163.com)

备注:安徽省重点研究与开发计划(1804a09020009)、过程装备与控制工程四川省高校重点实验室开放基金(GK201819、GK201714、GK201613)、安徽省仿真设计与现代制造工程技术研究中心开放研究项目(SGCZXYB1806)、安徽建筑大学引进人才及博士启动基金(2018QD38);

【1】Huang J H, Wang Z, Gao J M et al. Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer. Sensors. 16(8), (2016).

【2】Kim J A, Kim J W, Kang C S et al. Absolute angle measurement using a phase-encoded binary graduated disk. Measurement. 80, 288-293(2016).

【3】Wang X J and Liu B C. Rotation detection of prosthetic joint surface profile based on projection light knife. Laser & Optoelectronics Progress. 55(9), (2018).
王小娟, 刘丙才. 基于投影光刀的关节面轮廓旋转检测. 激光与光电子学进展. 55(9), (2018).

【4】Kandler G, Lukacevic M and Füssl J. An algorithm for the geometric reconstruction of knots within timber boards based on fibre angle measurements. Construction and Building Materials. 124, 945-960(2016).

【5】Zhang Q, Xia Y W, Wang S et al. A method for measuring degree of square of cigarette packet based on computer vision. Tobacco Science & Technology. 50(11), 87-92(2017).
张勍, 夏营威, 王澍 等. 基于计算机视觉的卷烟包装方正度测量方法. 烟草科技. 50(11), 87-92(2017).

【6】Yu L F, Pedrini G, Osten W et al. Three-dimensional angle measurement based on propagation vector analysis of digital holography. Applied Optics. 46(17), 3539-3545(2007).

【7】Hu W C, Qiu Z R and Zhang G X. Algorithm design and realization for large scale space angle measurement based on linear structured light. Journal of Optoelectronics·Laser. 24(2), 329-335(2013).
胡文川, 裘祖荣, 张国雄. 基于线结构光的大尺寸空间角度检测算法设计与实现. 光电子·激光. 24(2), 329-335(2013).

【8】Lü Y Y, Gu Y Y, Gao Z Y et al. Design and experiment of the monocular vision measurement system based on spatial cooperation pose. Laser & Optoelectronics Progress. 54(12), (2017).
吕耀宇, 顾营迎, 高瞻宇 等. 空间协同位姿单目视觉测量系统设计与实验. 激光与光电子学进展. 54(12), (2017).

【9】Lei J F, Wang D H and Yuan Z F. A measurement method of plane angle based on machine vision. Journal of South China University of Technology(Natural Science Edition). 39(8), 54-59(2011).
雷经发, 王德麾, 袁中凡. 基于机器视觉的平面夹角测量方法. 华南理工大学学报(自然科学版). 39(8), 54-59(2011).

【10】Zhao X C, He H and Tang H Y. Computer vision in action with MATLAB. 173-187(2018).
赵小川, 何灏, 唐弘毅. MATLAB计算机视觉实战. 173-187(2018).

【11】Kwon B K, Teng Z, Roh T J et al. Fast ellipse detection based on three point algorithm with edge angle information. International Journal of Control, Automation and Systems. 14(3), 804-813(2016).

【12】Yang M and Da F P. Circular control points detection based on circumscribed rectangle of an ellipse. Acta Optica Sinica. 38(12), (2018).
杨忞, 达飞鹏. 基于椭圆外切矩形性质的圆形标志点检测. 光学学报. 38(12), (2018).

【13】An J J, Gao N, Chen C et al. Correcting method and evaluation of eccentricity error of circle target. Laser & Optoelectronics Progress. 54(4), (2017).
安晶晶, 高楠, 陈超 等. 圆环标识的离心偏差校正方法与评价. 激光与光电子学进展. 54(4), (2017).

【14】Chen T F, Zhao J B, Wang Y L et al. Calculation for imaging center of circular array target based projective transform. Chinese Journal of Scientific Instrument. 36(4), 895-902(2015).
陈天飞, 赵吉宾, 王银灵 等. 基于射影变换圆阵靶标中心像点的计算. 仪器仪表学报. 36(4), 895-902(2015).

【15】Zhang G J. Machine vision. 14-27(2005).
张广军. 机器视觉. 14-27(2005).

【16】Li D D, Wen G J and Qiu S H. Cross-ratio-based line scan camera calibration using a planar pattern. Optical Engineering. 55(1), (2016).

【17】Chen X Y, Ma Z, Hu Y et al. A new method for accurate location of concentric circles in visual measurement. Journal of Optoelectronics·Laser. 24(8), 1524-1528(2013).
陈新禹, 马孜, 胡英 等. 视觉测量中圆形标记点的高精度定位. 光电子·激光. 24(8), 1524-1528(2013).

引用该论文

Jingfa Lei, Zhiqiang Chen, Miao Zhang, Yongling Li, Hong Sun. Measurement of Space Plane Angle Based on Concentric Circle Mark[J]. Laser & Optoelectronics Progress, 2019, 56(15): 151504

雷经发, 陈志强, 张淼, 李永玲, 孙虹. 基于同心圆标志的空间平面夹角测量[J]. 激光与光电子学进展, 2019, 56(15): 151504

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF