首页 > 论文 > Photonics Research > 9卷 > 1期(pp:34-42)

Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The Gerchberg–Saxton (GS) algorithm, which retrieves phase information from the measured intensities on two related planes (the source plane and the target plane), has been widely adopted in a variety of applications when holographic methods are challenging to be implemented. In this work, we showed that the GS algorithm can be generalized to retrieve the unknown propagating function that connects these two planes. As a proof-of-concept, we employed the generalized GS (GGS) algorithm to retrieve the optical transmission matrix (TM) of a complex medium through the measured intensity distributions on the target plane. Numerical studies indicate that the GGS algorithm can efficiently retrieve the optical TM while maintaining accuracy. With the same training data set, the computational time cost by the GGS algorithm is orders of magnitude less than that consumed by other non-holographic methods reported in the literature. Besides numerical investigations, we also experimentally demonstrated retrieving the optical TMs of a stack of ground glasses and a 1-m-long multimode fiber using the GGS algorithm. The accuracy of the retrieved TM was evaluated by synthesizing high-quality single foci and multiple foci on the target plane through these complex media. These results indicate that the GGS algorithm can handle a large TM with high efficiency, showing great promise in a variety of applications in optics.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.406010

所属栏目:Instrumentation and Measurements

基金项目:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809;

收稿日期:2020-08-20

录用日期:2020-10-17

网络出版日期:2020-11-05

作者单位    点击查看

Guoqiang Huang:Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Daixuan Wu:Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Jiawei Luo:Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Liang Lu:Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, China
Fan Li:Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Yuecheng Shen:Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;e-mail: shenyuecheng@mail.sysu.edu.cn
Zhaohui Li:Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China;e-mail: lzhh88@mail.sysu.edu.cn

联系人作者:Yuecheng Shen(shenyuecheng@mail.sysu.edu.cn); Zhaohui Li(lzhh88@mail.sysu.edu.cn);

备注:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809;

【1】R. W. GerchbergR. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 35, 237-246(1972).

【2】J. R. FienupJ. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758-2769(1982).

【3】J. R. FienupJ. R. Fienup. Phase-retrieval algorithms for a complicated optical system. Appl. Opt. 32, 1737-1746(1993).

【4】R. P. MillaneR. P. Millane. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A. 7, 394-411(1990).

【5】D. J. Kane and R. Trebino. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29, 571-579(1993).

【6】G. Zheng, R. Horstmeyer and C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics. 7, 739-745(2013).

【7】P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev and O. Cohen. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects. Nat. Commun. 6, (2015).

【8】K. Lee and Y. Park. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nat. Commun. 7, (2016).

【9】S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara and S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, (2010).

【10】J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos and A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature. 491, 232-234(2012).

【11】T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park and Z. Yaqoob. Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci. Rep. 3, (2013).

【12】I. N. Papadopoulos, S. Farahi, C. Moser and D. Psaltis. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express. 4, 260-270(2013).

【13】O. Katz, P. Heidmann, M. Fink and S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics. 8, 784-790(2014).

【14】J. Xu, H. Ruan, Y. Liu, H. Zhou and C. Yang. Focusing light through scattering media by transmission matrix inversion. Opt. Express. 25, 27234-27246(2017).

【15】J. Xu, M. Cua, E. H. Zhou, Y. Horie, A. Faraon and C. Yang. Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array. Opt. Lett. 43, 5255-5258(2018).

【16】G. Huang, D. Wu, J. Luo, Y. Huang and Y. Shen. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt. Express. 28, 9487-9500(2020).

【17】A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan and L. Daudet. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express. 23, 11898-11911(2015).

【18】S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by simulated annealing. Science. 220, 671-680(1983).

【19】T. Zhao, L. Deng, W. Wang, D. S. Elson and L. Su. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber. Opt. Express. 26, 20368-20378(2018).

【20】L. Deng, J. D. Yan, D. S. Elson and L. Su. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system. Opt. Express. 26, 18436-18447(2018).

【21】M. N’Gom, M.-B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen and R. R. Nadakuditi. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method. Sci. Rep. 7, (2017).

【22】M. N’Gom, T. B. Norris, E. Michielssen and R. R. Nadakuditi. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Opt. Lett. 43, 419-422(2018).

【23】J. W. GoodmanJ. W. Goodman. Speckle Phenomena in Optics: Theory and Applications. : Roberts & Company, (2007).

【24】I. M. Vellekoop and A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309-2311(2007).

【25】X. Cheng, B. Li, B. Zhang, Q. Feng, C. Lin and Y. Ding. Deeply focusing light at 1550 nm through strongly scattering media. Opt. Commun. 405, 412-415(2017).

【26】D. B. Conkey, A. M. Caravaca-Aguirre and R. Piestun. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express. 20, 1733-1740(2012).

【27】D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang and C. Yang. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica. 2, 728-735(2015).

引用该论文

Guoqiang Huang, Daixuan Wu, Jiawei Luo, Liang Lu, Fan Li, Yuecheng Shen, and Zhaohui Li, "Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices," Photonics Research 9(1), 34-42 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF