首页 > 论文 > Photonics Research > 4卷 > 3期(pp:111-114)

Dark solitons in WS2 erbium-doped fiber lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Tungsten disulfide (WS2) is a type of anisotropic-layered compound and has broadband saturable absorption features as saturable absorbers (SAs). With WS2-based SAs, dark solitons in erbium-doped fiber (EDF) lasers are first obtained. For the generated dark solitons, the center wavelength is measured to be 1530 nm, and the repetition rateis about 116.5 MHz. A series of optical spectra is exhibited. The electrical signal-to-noise ratio is better than 94 dB. Results in this paper demonstrate that WS2-based SAs are the promising SAs for generating dark solitons in EDF lasers.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.4.000111

基金项目:We express our sincere thanks to the editors and referees for their valuable comments. We also express our sincere thanks to Peiguang Yan for providing us the WS2-based SAs. This work has been supported by the National Key Basic Research Programof China (grant nos. 2012CB821304, 2013CB922401, and 2013CB922402), by the National Natural Science Foundation of China (NSFC) (grant nos. 61205064, 61378040, and 11078022), by the National Key Technology R&D Program of the Ministry of Science and Technology under grant no. 2012BAC23B03, and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, grant no. 600100161).

收稿日期:2016-02-03

录用日期:2016-03-11

网络出版日期:--

作者单位    点击查看

Wenjun Liu:State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876, ChinaBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Lihui Pang:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Hainian Han:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Zhongwei Shen:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Ming Lei:State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876, China
Hao Teng:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Zhiyi Wei:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

联系人作者:Zhiyi Wei(zywei@iphy.ac.cn)

【1】U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).

【2】B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).

【3】X. M. Liu, Y. D. Cui, D. D. Han, X. K. Yao, and Z. P. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).

【4】P. G. Yan, A. J. Liu, Y. S. Chen, J. Z. Wang, S. C. Ruan, H. Chen, and J. F. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).

【5】P. G. Yan, A. J. Liu, Y. S. Chen, H. Chen, S. C. Ruan, C. Y. Guo, S. F. Chen, I. L. Li, H. P. Yang, J. G. Hu, and G. Z. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).

【6】U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).

【7】L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultra short pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).

【8】P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 264–267 (2015).

【9】P. Grelu and N. Akhmediev, “Dissipative solitons for modelocked lasers,” Nat. Photonics 6, 84–92 (2012).

【10】L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23, 28698–28706 (2015).

【11】S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004).

【12】F. Wang,A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).

【13】T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).

【14】X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).

【15】Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).

【16】L. P. Sun, Z. Q. Lin, J. Peng, J. Weng, Y. Z. Huang, and Z. Q. Luo, “Preparation of few-layer bismuth selenide by liquid-phaseexfoliation and its optical absorption properties,” Sci. Rep. 4, 4794 (2014).

【17】P. G. Yan, R. Y. Lin, S. C. Ruan, A. J. Liu, H. Chen, Y. Q. Zheng, S. F. Chen, C. Y. Guo, and J. G. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).

【18】S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).

【19】Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).

【20】H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).

【21】R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).

【22】M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).

【23】R. Khazaeizhad, S. H. Kassani, H. Jeong, D. I. Yeom, and K. Oh, “Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes,” Opt. Express 22, 23732–23742 (2014).

【24】Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).

【25】D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).

【26】R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23, 20051–20061 (2015).

【27】J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

【28】Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).

【29】C.Zhao,H.Zhang,X.Qi,Y.Chen,Z.Wang,S.C.Wen,andD.Y.Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).

【30】H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).

【31】K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,”Small 11, 694–701 (2015).

【32】X. Zheng, Y. Zhang, R. Chen, X. Cheng, Z. Xu, and T. Jiang, “Zscan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015).

【33】K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).

【34】S. H. Kassani, R. Khazaeinezhad, H. Jeong, T. Nazari, D. I. Yeom, and K. Oh, “All-fiber Er-doped Q-Switched laser based on Tungsten disulfide saturable absorber,” Opt. Express 5, 373–379 (2015).

【35】M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Modelocked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).

【36】W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B 9, 1134–1144 (1992).

【37】C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).

【38】H. H. Liu and K. K. Chow, “Dark pulse generation in fiber lasers incorporating carbon nanotubes,” Opt. Express 22, 29708–29713 (2014).

【39】X. L. Li, S. M. Zhang, Y. C. Meng, and Y. P. Hao, “Harmonic mode locking counterparts of dark pulse and dark-bright pulse pairs,” Opt. Express 21, 8409–8416 (2013).

【40】Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).

【41】P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).

【42】W. Zhao and E. Bourkoff, “Propagation properties of dark solitons,” Opt. Lett. 14, 703–705 (1989).

【43】H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).

【44】D. Y. Tang, J. Guo, Y. F. Song, H. Zhang, L. M. Zhao, and D. Y. Shen, “Dark soliton fiber lasers,” Opt. Express 22, 19831–19837 (2014).

【45】Y. Q. Ge, J. L. Luo, L. Li, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “Initial conditions for dark soliton generation in normal-dispersion fiber lasers,” Appl. Opt. 54, 71–75 (2015).

【46】G. D. Shao, Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “Induced dark solitary pulse in an anomalous dispersion cavity fiber laser,” Opt. Express 23, 28430 (2015).

【47】W. J. Liu, L. H. Pang, H. N. Han, W. L. Tian, H. Chen, M. Lei, P. G. Yan, and Z. Y. Wei, “Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers,” Opt. Express 23, 26023–26031 (2015).

【48】H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80, 045803 (2009).

【49】X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm brightdark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7, 022704 (2014).

【50】D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal dispersion fiber lasers,” Phys. Rev. A 88, 013849 (2013).

【51】D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fibre,” Electron. Lett. 30, 1326–1327 (1994).

【52】A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun. 133, 541–548 (1997).

【53】T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Selfinduced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).

【54】Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “280 GHz dark soliton fiber laser,” Opt. Lett. 39, 3484–3487 (2014).

引用该论文

Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng, and Zhiyi Wei, "Dark solitons in WS2 erbium-doped fiber lasers," Photonics Research 4(3), 0111 (2016)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF