首页 > 论文 > Photonics Research > 4卷 > 6期(pp:233-239)

Theory of high-density low-cross-talk waveguide superlattices

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Waveguide superlattices, a special type of waveguide arrays, can be designed to achieve very low cross talk at submicrometer/subwavelength pitches. The theoretical framework and design rationales for such waveguide superlattices will be presented in depth. Waveguide sidewall roughness can help to deter the coherent coupling between identical waveguides in nearby supercells, but it also induces random fluctuation of transmission. Statistical behavior of the transmission due to roughness in a waveguide superlattice is systematically treated. Complex transmission characteristics due to spectral oscillation and random roughness will be presented, and their evolution with the superlattice length will be analyzed.Institutions.

投稿润色
补充资料

DOI:10.1364/prj.4.000233

基金项目:Young Thousand Talents program of China; Jiangsu Specially Appointed Professor program; Priority Academic Program Development of Jiangsu Higher Education

收稿日期:2016-06-13

录用日期:2016-09-03

网络出版日期:--

作者单位    点击查看

Nan Yang:National Laboratory of Solid State Microstructures, Nanjing 210093, ChinaCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Huashan Yang:National Laboratory of Solid State Microstructures, Nanjing 210093, ChinaCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Hengrun Hu:National Laboratory of Solid State Microstructures, Nanjing 210093, ChinaCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Rui Zhu:National Laboratory of Solid State Microstructures, Nanjing 210093, ChinaCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Shining Chen:National Laboratory of Solid State Microstructures, Nanjing 210093, ChinaCollege of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Hongguo Zhang:National Laboratory of Solid State Microstructures, Nanjing 210093, ChinaCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Wei Jiang:National Laboratory of Solid State Microstructures, Nanjing 210093, ChinaCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

联系人作者:Wei Jiang(weijiang@nju.edu.cn)

【1】W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).

【2】P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).

【3】P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).

【4】R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

【5】B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).

【6】G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

【7】X. Xiao, Z. Li, T. Chu, H. Xu, X. Li, A. Nemkova, X. Kang, Y. Yu, and J. Yu, “Development of silicon photonic devices for optical interconnects,” Sci. China Technol. Sci. 56, 586–593 (2013).

【8】W. D. Sacher, Y. Huang, G. Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33, 901–910 (2015).

【9】Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3, B10–B27 (2015).

【10】P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100(+)Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

【11】R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A nanophotonic interconnect for high-performance many-core computation,” presented at the 16th IEEE Symposium on High Performance Interconnects (HOTI), (Aug. 2008).

【12】D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99, 051104 (2011).

【13】K. Van Acoleyen, W. Bogaerts, J. Jagerska, N. Le Thomas, R. Houdre, and R. Baets, “Off-chip beam steering with a onedimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).

【14】F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L.Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).

【15】W. Jiang, “Waveguide superlattices for high density photonics integration,” U.S. Provisional Patent Application No. 61/877,052 (2013).

【16】W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).

【17】M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).

【18】K. Murray, Z. Lu, H. Jayatilleka, and L. Chrostowski, “Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon,” Opt. Express 23, 19575–19585 (2015).

【19】K. Chen, S. Wang, S. Chen, S. Wang, C. Zhang, D. Dai, and L. Liu, “Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array,” Opt. Lett. 40, 4655–4658 (2015).

【20】B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

【21】T. B. Yu, N. H. Liu, J. H. Huang, J. Y. Yang, and X. Q. Jiang, “Decoupling of multiple coupled photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 423–425 (2009).

【22】D. Kwong, A. Hosseini, J. Covey, X. Xiaochuan, Z. Yang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photon. Technol. Lett. 26, 991–994 (2014).

【23】S. S. Abdullaev and F. K. Abdullaev, “On light propagation in a system of tunnelcoupled waveguides,” Izv. Vuz. Radiofiz. 23, 766–767 (1980).

【24】S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

【25】M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).

【26】W. Jiang and C. D. Gong, “Two mechanisms, three stages of the localization of light in a disordered dielectric structure with photonic band gaps,” Phys. Rev. B 60, 12015–12022 (1999).

【27】S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).

【28】W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010).

【29】G. H. Golub and C. F. van Loan, Matrix Computations (Johns Hopkins University, 1989).

【30】Y. Xing, D. Spina, A. Li, T. Dhaene, and W. Bogaerts, “Stochastic collocation for device-level variability analysis in integrated photonics,” Photon. Res. 4, 93–100 (2016).

引用该论文

Nan Yang, Huashan Yang, Hengrun Hu, Rui Zhu, Shining Chen, Hongguo Zhang, and Wei Jiang, "Theory of high-density low-cross-talk waveguide superlattices," Photonics Research 4(6), 233-239 (2016)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF