首页 > 论文 > 中国激光 > 44卷 > 1期(pp:102002--1)

飞秒激光直写制备内嵌微透镜、能源器件及生物传感器的研究进展

Research Progress in Fabrication of Embedded Microball Lenses, Energy Devices and Biosensors by Femtosecond Laser Direct Writing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒激光具有超短脉宽和极高峰值强度, 已广泛应用于精细加工与微纳制造领域。目前, 激光直写技术用于柔性器件的制备受到极大的关注。综述了激光直写技术的四个研究方向:1)激光直写微透镜用于广角成像; 2)激光制备纳米金/还原氧化石墨烯微超级电容器; 3)聚酰亚胺基体上多层超级电容器的制备; 4)电容生物传感器的激光制备。同时介绍了本课题组开展的相关研究工作, 可为激光直写制备微纳结构器件的研究与应用及未来发展方向提供参考。

Abstract

Femtosecond laser has been widely used in elaborate processing and micro/nano manufacturing field due to its ultrashort pulse width and extremely high peak intensity. At present, the fabrication of flexible devices by laser direct writing has attracted much attention. The following four research directions based on laser direct writing technology are reviewed: 1) laser direct writing microball lens for wide angle imaging; 2) laser fabrication of Au/reduced graphene oxide micro supercapacitor; 3) preparation of multilayer supercapacitor on polyimide substrate; 4) laser fabrication of capacitive biosensor. Relevant research work of our group is introduced at the same time. This paper provides a reference for the research, application and future direction of the micro/nano device fabrication by laser direct writing.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/cjl201744.0102002

所属栏目:“超快激光加工与微纳制造”专题

基金项目:美国田纳西大学科研启动基金、北京市重点项目(KZ20141000500)、国家自然科学基金面上项目(51575016)、中国国家留学基金委项目(201506240097)、美国能源部橡树岭国家实验室合作基金(R011373616)

收稿日期:2016-08-03

修改稿日期:2016-09-15

网络出版日期:--

作者单位    点击查看

周伟平:北京工业大学激光工程研究院, 北京 100124
王树同:田纳西大学机械航空与生物医疗工程系, 田纳西州 诺克斯维尔 37996 美国四川大学电子信息学院激光微纳工程研究所, 四川 成都 610064
于泳超:田纳西大学机械航空与生物医疗工程系, 田纳西州 诺克斯维尔 37996 美国
郑崇:北京工业大学激光工程研究院, 北京 100124田纳西大学机械航空与生物医疗工程系, 田纳西州 诺克斯维尔 37996 美国光学辐射重点实验室, 北京 100854
李若舟:田纳西大学机械航空与生物医疗工程系, 田纳西州 诺克斯维尔 37996 美国
侯婷琇:北京工业大学激光工程研究院, 北京 100124
白石:北京工业大学激光工程研究院, 北京 100124
马德龙:北京工业大学激光工程研究院, 北京 100124
冯国英:四川大学电子信息学院激光微纳工程研究所, 四川 成都 610064
胡安明:北京工业大学激光工程研究院, 北京 100124田纳西大学机械航空与生物医疗工程系, 田纳西州 诺克斯维尔 37996 美国

联系人作者:周伟平(chinaweiping@163.com)

备注:周伟平(1987-), 男, 博士研究生, 主要从事激光微纳加工与制造方面的研究。

【1】Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

【2】Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 2008, 92(4): 041914.

【3】Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4): 217-224.

【4】Hu A, Rybachuk M, Lu Q B, et al. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation[J]. Applied Physics Letters, 2007, 91(13): 131906.

【5】Hu A, Peng P, Alarifi H, et al. Femtosecond laser welded nanostructures and plasmonic devices[J]. Journal of Laser Applications, 2012, 24(4): 042001.

【6】Zheng C, Hu A M, Chen T, et al. Femtosecond laser internal manufacturing of three-dimensional microstructure devices[J]. Applied Physics A, 2015, 121(1): 163-177.

【7】Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

【8】Zhao Y Y, Zheng M L, Dong X Z, et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser[J]. Applied Physics Letters, 2016, 108(22): 221104.

【9】Blasco E, Müller J, Müller P, et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing[J]. Advanced Materials, 2016, 28(18): 3592-3595.

【10】Hu A, Li R, Bridges D, et al. Photonic nanomanufacturing of high performance energy devices on flexible substrates[J]. Journal of Laser Applications, 2016, 28(2): 022602.

【11】Zhou W, Bai S, Ma Y, et al. Laser direct writing of silver metal electrodes on transparent flexible substrates with high bonding strength[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24887-24892.

【12】Hooke R. Micrographia[M]. London: J. Martyn and J. Allestry, 1665: 81-82.

【13】Fujita T, Nishihara H, Koyama J. Fabrication of micro lenses using electron-beam lithography[J]. Optics Letters, 1981, 6(12): 613-615.

【14】Liau Z L, Diadiuk V, Walpole J N, et al. Gallium phosphide microlenses by mass transport[J]. Applied Physics Letters, 1989, 55(2): 97-99.

【15】Ma N, Ashok P C, Stevenson D J, et al. Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery[J]. Biomedical Optics Express, 2010, 1(2): 694-705.

【16】Wrzesniewski E, Eom S H, Cao W, et al. Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays[J]. Small, 2012, 8(17): 2647-2651.

【17】Kato J I, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 2005, 86(4): 044102.

【18】Buettner A, Zeitner U D. Wave optical analysis of light-emitting diode beam shaping using microlens arrays[J]. Optical Engineering, 2002, 41(10): 2393-2401.

【19】Siu C P B, Zeng H S, Chiao M. Magnetically actuated MEMS microlens scanner for in vivo medical imaging[J]. Optics Express, 2007, 15(18): 11154-11166.

【20】Roulet J C, Vlkel R, Herzig H P, et al. Performance of an integrated microoptical system for fluorescence detection in microfluidic systems[J]. Analytical Chemistry, 2002, 74(14): 3400-3407.

【21】Nussbaum P, Vlkel R, Herzig H P, et al. Design, fabrication and testing of microlens arrays for sensors and microsystems[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 1997, 6(6): 617-636.

【22】Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

【23】Byun M, Han W, Li B, et al. Guided organization of λ-DNA into microring arrays from liquid capillary bridges[J]. Small, 2011, 7(12): 1641-1646.

【24】Ishii Y, Koike S, Arai Y, et al. Ink-jet fabrication of polymer microlens for optical-I/O chip packaging[J]. Japanese Journal of Applied Physics, 2000, 39(3B): 1490-1493.

【25】Chang C Y, Yang S Y, Huang L S, et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Physics & Technology, 2006, 48(2): 163-173.

【26】Chen F, Liu H W, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 2010, 18(19): 20334-20343.

【27】Ye X Z, Zhang F, Ma Y R, et al. Brittle star-inspired microlens arrays made of calcite single crystals[J]. Small, 2015, 11(14): 1677-1682.

【28】Hou T X, Zheng C, Bai S, et al. Fabrication, characterization, and applications of microlenses[J]. Applied Optics, 2015, 54(24): 7366-7376.

【29】Cheng Y, Tsai H L, Sugioka K, et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. Applied Physics A, 2006, 85(1): 11-14.

【30】Lin C H, Jiang L, Chai Y H, et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 2009, 97(4): 751-757.

【31】Wu D, Xu J, Niu L G, et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light: Science & Applications, 2015, 4(1): e228.

【32】Wang Z K, Sugioka K, Midorikawa K. Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 2007, 89(4): 951-955.

【33】Zheng C, Hu A M, Li R Z, et al. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser[J]. Optics Express, 2015, 23(13): 17584-17598.

【34】Zheng C, Hu A M, Kihm K D, et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging[J]. Small, 2015, 11(25): 3007-3016.

【35】Futaba D N, Hata K, Yamada T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12): 987-994.

【36】Wu Z S, Parvez K, Feng X L, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications, 2013, 4: 2487.

【37】El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energystorage[J]. Nature Communications, 2013, 4: 1475.

【38】Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 2011, 6(8): 496-500.

【39】El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330.

【40】Li R Z, Peng R, Kihm K D, et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 2016, 9(4): 1458-1467.

【41】Bai S, Zhou W P, Lin Y H, et al. Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy[J]. Journal of Nanoparticle Research, 2014, 16(7): 2470-2477.

【42】Li R Z, Hu A, Bridges D,et al. Robust Ag nanoplate ink for flexible electronics packaging[J]. Nanoscale, 2015, 7(16): 7368-7377.

【43】El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 2013, 4: 1475.

【44】Lin J, Peng Z W, Liu Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5: 5714.

【45】Peng Z, Ye R, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 2015, 9(6): 5868-5875.

【46】In J B, Hsia B, Yoo J H, et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 2015, 83: 144-151.

【47】Cai J G, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment[J]. Journal of Materials Chemistry A, 2016, 4(5): 1671-1679.

【48】Clerici F, Fontana M, Bianco S, et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10459-10465.

【49】Hugo E R, Brandebourg T D, Woo J G, et al. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes[J]. Environmental Health Perspectives, 2008, 116(12): 1642-1647.

【50】Newbold R R, Jefferson W N, Padilla-Banks E. Prenatal exposure to bisphenol A at environmentally relevant doses adversely affects the murine female reproductive tract later in life[J]. Environmental Health Perspectives, 2009, 117(6): 879-885.

【51】Kafi M A, Kim T H, An J H, et al. Electrochemical cell-based chip for the detection of toxic effects of bisphenol-A on neuroblastoma cells[J]. Biosensors and Bioelectronics, 2011, 26(7): 3371-3375.

【52】Soh N, Watanabe T, Asano Y, et al. Indirect competitive immunoassay for bisphenol A, based on a surface plasmon resonance sensor[J]. Sensors and Materials, 2003, 15(8): 423-438.

【53】Rather J A, de Wael K. Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology[J]. Sensors and Actuators B: Chemical, 2013, 176: 110-117.

【54】Fan H X, Li Y, Wu D, et al. Electrochemical bisphenol A sensor based on N-doped graphene sheets[J]. Analytica Chimica Acta, 2012, 711(20): 24-28.

【55】Santhi V A, Sakai N, Ahmad E D, et al. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water[J]. Science of the Total Environment, 2012, 427-428(15): 332-338.

【56】Zhu Y Y, Cai Y L, Xu L G, et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A[J]. ACS Applied Materials & Interfaces, 2015, 7(14): 7492-7496.

【57】Kim S G, Lee J S, Jun J, et al. Ultrasensitive bisphenol A field-effect transistor sensor using an aptamer-modified multichannel carbon nanofiber transducer[J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6602-6610.

【58】Ragavan K V, Selvakumar L S, Thakur M S. Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A[J]. Chemical Communications, 2013, 49(53): 5960-5962.

【59】Cui H C, Cheng C, Lin X G, et al. Rapid and sensitive detection of small biomolecule by capacitive sensing and low field AC electrothermal effect[J]. Sensors and Actuators B: Chemical, 2016, 226: 245-253.

【60】Cheng C, Wang S, Wu J, et al. Bisphenol-A sensors on polyimide fabricated by laser direct writing for on-site river water monitoring at attomolar concentration[J]. ACS Applied Materials & Interfaces. 2016, 8(28): 17784-17792.

引用该论文

Zhou Weiping,Wang Shutong,Yu Yongchao,Zheng Chong,Li Ruozhou,Hou Tingxiu,Bai Shi,Ma Delong,Feng Guoying,Hu Anming. Research Progress in Fabrication of Embedded Microball Lenses, Energy Devices and Biosensors by Femtosecond Laser Direct Writing[J]. Chinese Journal of Lasers, 2017, 44(1): 0102002

周伟平,王树同,于泳超,郑崇,李若舟,侯婷琇,白石,马德龙,冯国英,胡安明. 飞秒激光直写制备内嵌微透镜、能源器件及生物传感器的研究进展[J]. 中国激光, 2017, 44(1): 0102002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF