首页 > 论文 > 中国激光 > 44卷 > 1期(pp:102003--1)

基于飞秒激光直写的三维高定向碳纳米管组装

3D Assembly of Aligned Carbon Nanotubes via Femtosecond Laser Direct Writing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了碳纳米管(CNTs)/聚合物复合材料分散性、定向排布和组装方面的研究进展, 并利用双光子聚合(TPP)激光直写技术, 实现了多壁碳纳米管(MWNTs)在三维空间的定向排布和分子组装。通过加入硫醇分子, 提升了MWNTs/聚合物复合材料中CNTs的分散性和掺杂浓度, 增强了CNTs/聚合物复合材料在电学、光学、力学方面的性能, 并成功实现了三维CNTs功能器件的制造。研究结果表明, 通过将TPP激光直写技术与热退火工艺相结合, 可以实现对CNTs簇排列方向和位置的精确控制。

Abstract

The research status of dispersion, alignment and assembly of carbon nanotubes (CNTs)/polymer composite material is reviewed. In addition, the assembly and alignment in the arbitrary 3D space of multi-wall CNTs (MWNTs) are realized via the laser direct writing technique based on two-photon polymerization (TPP). The addition of thiol molecules makes the dispersion and doping concentration of CNTs in MWCNTs/polymer composites improved, and the optical and mechanical performances enhanced, and the fabrication of 3D CNTs functional devices realized. The research results indicate that, under the combination of TPP laser direct writing technique and thermal annealing process, the precise control of the orientation and placement of CNTs clusters can be achieved.

投稿润色
补充资料

中图分类号:TN24

DOI:10.3788/cjl201744.0102003

所属栏目:“超快激光加工与微纳制造”专题

基金项目:美国国家自然科学基金(1265122)、国家自然科学基金(61378031)、华中科技大学人才引进基金(3004187102)

收稿日期:2016-09-01

修改稿日期:2016-09-21

网络出版日期:--

作者单位    点击查看

龙婧:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
熊伟:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
刘莹:美国内布拉斯加林肯大学电子工程系, 林肯 68503, 美国
蒋立佳:美国内布拉斯加林肯大学电子工程系, 林肯 68503, 美国
周云申:美国内布拉斯加林肯大学电子工程系, 林肯 68503, 美国
李大卫:美国内布拉斯加林肯大学电子工程系, 林肯 68503, 美国
姜澜:北京理工大学机械与车辆学院, 北京 100081
陆永枫:华中科技大学武汉光电国家实验室, 湖北 武汉 430074美国内布拉斯加林肯大学电子工程系, 林肯 68503, 美国

联系人作者:龙婧(M201572547@hust.edu.cn)

备注:龙婧(1993-), 女, 硕士研究生, 主要从事双光子三维成型方面的研究。

【1】Robert B. Recent developments in MEMS sensors: A review of applications, markets and technologies[J]. Sensor Review, 2013, 33 (4): 300-304.

【2】Zhao W S, Yin W Y, Guo Y X, et al. Electrical modeling of multi-walled carbon nanotube (MWCNT)-based capacitors for high-density RF integration[C]. 2013 IEEE International Wireless Symposium, 2013.

【3】Schell A W, Kaschke J,Fischer J, et al. Single photon nanophotonics using NV centers in three-dimensional laser-written microstructures[C]. 2013 Conference on and International Quantum Electronics Conference Lasers, 2013: 1.

【4】Takenaga S, Schneider B, Erbay E, et al. Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process[J]. Physica Status Solidi A, 2015, 212(6): 1347-1352.

【5】Gou M L, Qu X, Zhu W, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites[J]. Nature Communications, 2014, 5: 9.

【6】Cheng Y, Liao Y, Sugioka K, et al. Fabrication of functional micro- and nanofluidics embedded in glass using femtosecond laser microprocessing[C]. 2013 Conference on Lasers and Electro-Optics Pacific Rim, 2013: 2.

【7】Bártolo P J. Stereolithographic processes[M]. Boston: Springer, 2011: 1-36.

【8】Guo L J. Nanoimprint lithography: Methods and material requirements[J]. Advanced Materials, 2007, 19 (4): 495-513.

【9】Tseng A A, Notargiacomo A, Chen T P. Nanofabrication by scanning probe microscope lithography: A review[J]. Journal of Vacuum Science & Technology B, 2005, 23(3): 877-894.

【10】Xia Y N, Whitesides G M. Soft lithography[J]. Annual Review of Materials Science, 1998, 28 (1): 153-184.

【11】Ishitobi H, Shoji S, Hiramatsu T, et al. Two-photon induced polymer nanomovement[J]. Optics Express, 2008, 16(18): 14106-14114.

【12】Sun Z B, Dong X Z, Chen W Q, et al. Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures[J]. Advanced Materials, 2008, 20(5): 914.

【13】Masui K, Shoji S, Asaba K, et al. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization[J]. Optics Express, 2011, 19(23): 22786-22796.

【14】Xia H, Wang J A, Tian Y, et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Advanced Materials, 2010, 22(29): 3204.

【15】Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules, 2006, 39(16): 5194-5205.

【16】Mc Nally T, Ptschke P, Halley P, et al. Polyethylene multiwalled carbon nanotube composites[J]. Polymer, 2005, 46(19): 8222-8232.

【17】Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication[J]. Chemical Physics Letters, 2002, 364(3-4): 303-308.

【18】Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.

【19】Gong S, Zhu Z H, Meguid S A. Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes[J]. Polymer, 2015, 56(15): 498-506.

【20】Thostenson E T, Li C Y, Chou T W. Nanocomposites in context[J]. Composites Science and Technology, 2005, 65(3-4): 491-516.

【21】Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes[J]. Nature Materials, 2003, 2(5): 338-342.

【22】Coleman J N, Khan U, Gun′ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials, 2006, 18(6): 689-706.

【23】Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser & Photonics Reviews, 2013, 7(1): 22-44.

【24】Guo Q C, Xiao S Z, Aumann A, et al. Using laser microfabrication to write conductive polymer/SWNTs nanocomposites[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(1): 44-48.

【25】Ushiba S, Shoji S, Masui K, et al. 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography[J]. Carbon, 2013, 59: 283-288.

【26】Ushiba S, Shoji S, Masui K, et al. Direct laser writing of 3D architectures of aligned carbon nanotubes[J]. Advanced Materials, 2014, 26(32): 5653.

【27】De Volder M F L, Tawfick S H, Baughman R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.

【28】Qiu Jiale, Xu Doudou, Zhao Zhenfeng, et al. The status of functionalizing carbon nanotubes and relevant applications[J]. Materials Review, 2015, 29(3): 20-24.
邱家乐, 徐豆豆, 赵真凤, 等. 碳纳米管的功能化修饰及应用研究进展[J]. 材料导报, 2015, 29(3): 20-24.

【29】Ntim S A, Sae-Khow O, Desai C, et al. Size dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes[J]. Journal of Environmental Monitoring, 2012, 14(10): 2772-2779.

【30】Li J, Ma P C, Chow W S, et al. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes[J]. Advanced Functional Materials, 2007, 17(16): 3207-3215.

【31】Nguyen L H, Straub M, Gu M. Acrylate-based photopolymer for two-photon microfabrication and photonic applications[J]. Advanced Functional Materials, 2005, 15(2): 209-216.

【32】Xiong W, Liu Y, Jiang L J, et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication[J]. Advanced Materials, 2016, 28(10): 2002-2009.

【33】Kurselis K, Kiyan R, Bagratashvili V N, et al. 3D fabrication of all-polymer conductive microstructures by two photon polymerization[J]. Optics Express, 2013, 21(25): 31029-31035.

【34】Yang H, Fu B, Li D, et al. Broadband laser polarization control with aligned carbon nanotubes[J]. Nanoscale, 2015, 7(25): 11199-11205.

【35】Li H, Banerjee K. High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design[J]. IEEE Transaction on Electron Devices, 2009, 56(10): 2202-2214.

引用该论文

Long Jing,Xiong Wei,Liu Ying,Jiang Lijia,Zhou Yunshen,Li Dawei,Jiang Lan,Lu Yongfeng. 3D Assembly of Aligned Carbon Nanotubes via Femtosecond Laser Direct Writing[J]. Chinese Journal of Lasers, 2017, 44(1): 0102003

龙婧,熊伟,刘莹,蒋立佳,周云申,李大卫,姜澜,陆永枫. 基于飞秒激光直写的三维高定向碳纳米管组装[J]. 中国激光, 2017, 44(1): 0102003

被引情况

【1】燕天阳,季凌飞,Li Lin,Amina,王文豪,林真源,杨 强. 采用化学腐蚀辅助皮秒激光成丝技术获得蓝宝石亚微米级精细切面的研究. 中国激光, 2017, 44(10): 1002002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF