首页 > 论文 > Chinese Optics Letters > 15卷 > 3期(p:031401)

Frequency-stabilized laser system at 1572 nm for space-borne CO2 detection LIDAR

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A frequency-stabilized laser system at 1572 nm for space-borne carbon dioxide (CO2) detection LIDAR to realize the precise measurement of the global atmospheric CO2 concentration is presented in this Letter. A distributed-feedback laser diode serves as the master laser (ML) and is wavelength locked to the CO2 line center at 1572.0179 nm using the external frequency modulation technique. The root mean square frequency drift is suppressed to about 50 kHz at an average time of 0.1 s over 8 h. Based on optical phase-locked loops, an online seeder and an offline seeder are offset locked to the reference laser at 1572.024 and 1572.081 nm, respectively, retaining virtually the same frequency stability as the ML.

投稿润色
补充资料

DOI:10.3788/col201715.031401

所属栏目:Lasers and laser optics

收稿日期:2016-10-24

录用日期:2016-12-23

网络出版日期:2017-01-22

作者单位    点击查看

Juan Du:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Yanguang Sun:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
Dijun Chen:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
Yongji Mu:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
Minjie Huang:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
Zhongguo Yang:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
Jiqiao Liu:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
Decang Bi:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
Xia Hou:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China
and Weibiao Chen:Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201 800, China

联系人作者:联系作者(djchen@siom.ac.cn)

【1】J. E. Bauer, W. J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson, and P. A. Regnier, Nature 504, 61 (2013).

【2】S. Solomon, Climate Chang 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Cambridge University Press, 2007).

【3】I. Y. Fung, S. C. Doney, K. Lindsay, and J. John, Proc. Natl. Acad. Sci. 102, 11201 (2005).

【4】S. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and P. Tans, Science 282, 442 (1998).

【5】N. Saitoh, R. Imasu, Y. Ota, and Y. Niwa, J. Geophys. Res.: Atmos. 114, D17305 (2009).

【6】Atmospheric Infrared Sounder, http://airs.jpl.nasa.gov.

【7】J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, Proc. SPIE 7479, 74790E (2009).

【8】J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, and S. Ismail, Appl. Opt. 52, 2874 (2013).

【9】J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, Remote Sens. 6, 443 (2013).

【10】J. Caron, and Y. Durand, Appl. Opt. 48, 5413 (2009).

【11】G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, Appl. Phys. B 90, 593 (2008).

【12】P. F. Ambrico, A. Amodeo, P. Di Girolamo, and N. Spinelli, Appl. Opt. 39, 6847 (2000).

【13】J. Q. Liu, Y. Y. Xie, S. G. Li, H. H. Li, X. H. Ma, and X. L. Zhu, Infrared 2, 007 (2013).

【14】H. Li, X. Zhu, X. Ma, S. Li, and W. Chen, Chin. Opt. Lett. 13, 111402 (2015).

【15】C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, and K. L. Corwin, Appl. Opt. 52, 5430 (2013).

【16】M. Triches, M. Michieletto, J. Hald, J. K. Lyngs?, J. L?gsgaard, and O. Bang, Opt. Express 23, 11227 (2015).

【17】M. Triches, A. Brusch, and J. Hald, Appl. Phys. B 121, 251 (2015).

【18】M. Holá, B. Mikel, J. Hrabina, J. Lazar, and O. ?íp, Proc. SPIE 9525, 95254L (2015).

【19】K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, Appl. Opt. 50, 1047 (2011).

【20】A. Fix, R. Matthey, A. Amediek, G. Ehret, F. Gruet, C. Kiemle, V. Klein, G. Mileti, J. Pereira do Carmo, and M. Quatrevalet, in International Conference on Space Optics (2014).

【21】W. Gong, X. Ma, G. Han, C. Xiang, A. Liang, and W. Fu, Opt. Express 23, 6151 (2015).

【22】C. Wei, S. Yan, Aiai Jia, Y. Luo, Q. Hu, and Z. Li, Chin. Opt. Lett. 14, 051403 (2016).

【23】E. D. Black, Am. J. Phys. 69, 79 (2001).

【24】G. C. Bjorklund, Opt. Lett. 5, 15 (1980).

【25】M. Yongji, D. Juan, Y. Zhongguo, S. Yanguang, L. Jiqiao, H. Xia, and C. Weibiao, Appl. Opt. 55, 7106 (2016).

【26】D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, Jpn. J. Appl. Phys. 47, 325 (2008).

引用该论文

Juan Du, Yanguang Sun, Dijun Chen, Yongji Mu, Minjie Huang, Zhongguo Yang, Jiqiao Liu, Decang Bi, Xia Hou, and Weibiao Chen, "Frequency-stabilized laser system at 1572 nm for space-borne CO2 detection LIDAR," Chinese Optics Letters 15(3), 031401 (2017)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF