首页 > 论文 > 光学学报 > 37卷 > 3期(pp:318005--1)

随机光学重构显微成像技术及其应用

Stochastic Optical Reconstruction Microscopy Imaging Technique and Application

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光学显微成像技术在生命科学、生物医学、临床医学诊断和材料科学等领域有着非常广泛的应用。但由于光学衍射极限的存在, 传统光学显微镜无法观察到纳米尺度的物质及生命活动, 极大地限制科学研究和医学的发展。近年来, 随着突破光学衍射极限的超分辨成像技术的不断发展, 显微成像分辨率得到不同程度的提高。目前在基于不同原理的各种超高分辨率显微镜中, 随机光学重构显微镜 (STORM) 分辨率最高, 可达几十纳米, 真正实现了单分子水平检测。着重介绍了STORM超分辨显微成像技术的原理、实验方法及其应用。

Abstract

Optical microscope is widely used in many fields such as life science, biomedicine, clinical diagnosis and material science. But due to the optical diffraction limit, the traditional optical microscope cannot reach the nanoscale resolution, which greatly restricts the development of science and medicine. In recent years, a number of super-resolution fluorescence microscopy techniques are invented to overcome the diffraction barrier and the imaging resolution are improved at various degrees. Among various super high resolution microscopes based on different principles, the stochastic optical reconstruction microscopy (STORM) reaches the highest spatial resolution, about tens of nanometer, and therefore it can realize the single molecule detection. The principle, experimental method and its application of STORM super resolution microscope are mainly introduced.

投稿润色
补充资料

中图分类号:O439

DOI:10.3788/aos201737.0318005

所属栏目:“超分辨成像”专题

基金项目:国家重点研发计划精准医学研究专项(2016YFC0905900)、2015年青年千人计划

收稿日期:2016-12-14

修改稿日期:2016-01-12

网络出版日期:--

作者单位    点击查看

杨洁:上海科技大学ihuman研究所, 上海 200120
田翠萍:上海科技大学ihuman研究所, 上海 200120
钟桂生:上海科技大学ihuman研究所, 上海 200120

联系人作者:杨洁(yangjie1@shanghaitech.edu.cn)

备注:杨洁(1994-), 女, 硕士研究生, 主要从事超高分辨率显微成像方面的研究。

【1】Lippincott-Schwartz J, Manley S. Putting super-resolution fluorescence microscopy to work[J]. Nat Methods, 2009, 6(1): 21-23.

【2】Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy[J]. Annu Rev Biochem, 2009, 78: 993-1016.

【3】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780-782.

【4】Berning S, Willig K I, Steffens H, et al. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068): 551.

【5】Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J Microsc, 2000, 198(Pt2): 82-87.

【6】Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proc Natl Acad Sci U S A, 2005, 102(37): 13081-13086.

【7】Hess S T, Girirajan T P, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophys J, 2006, 91(11): 4258-4272.

【8】Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

【9】Bates W M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753.

【10】Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813.

【11】Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 2010, 143(7): 1047-1058.

【12】Jiang G, Freywald T, Webster J, et al. In human leukemia cells ephrin-B-induced invasive activity is supported by Lck and is associated with reassembling of lipid raft signaling complexes[J]. Mol Cancer Res, 2008, 6(2): 291-305.

【13】Diep C Q, Tao X R, Pilauri V, et al. Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch[J]. Genetics, 2008, 178(2): 725-736.

【14】Appel N, Zayas M, Miller S, et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly[J]. PLoS Pathog, 2008, 4(3): e1000035.

【15】Lin W, Margolskee R, Donnert G, et al. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals[J]. Proc Natl Acad Sci U S A, 2007, 104(7): 2471-2476.

【16】Kural C, Kim H, Syed S, et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement?[J]. Science, 2005, 308(5727): 1469-1472.

【17】Kittel R J, Wichmann C, Rasse T M, et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release[J]. Science, 2006, 312(5776): 1051-1054.

【18】Scherer N F. Imaging: pointillist microscopy[J]. Nat Nanotechnol, 2006, 1(1): 19-20.

【19】Sieber J J, Willig K I, Kutzner C, et al. Anatomy and dynamics of a supramolecular membrane protein cluster[J]. Science, 2007, 317(5841): 1072-1076.

【20】Westphal V, Hell S W. Nanoscale resolution in the focal plane of an optical microscope[J]. Phys Rev Lett, 2005, 94(14): 143903.

【21】Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J Microsc, 2000, 198(Pt 2): 82-87.

【22】Selvin P R. Lighting up single ion channels[J]. Biophys J, 2003, 84(1): 1-2.

【23】Yildiz A, Forkey J N, McKinney S A, et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization[J]. Science, 2003, 300(5628): 2061-2065.

【24】Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nat Methods, 2006, 3(10): 793-795.

【25】Gustafsson M G, Agard D A, Sedat J W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution[J]. J Microsc, 1999, 195(Pt1): 10-16.

【26】Fiolka R, Shao L, Rego E H, et al. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination[J]. P Natl Acad Sci USA, 2012, 109(14): 5311-5315.

【27】Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 2013, 339(6118): 452-456.

【28】Huang B, Jones S A, Brandenburg B, et al. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution[J]. Nat Methods, 2008, 5(12): 1047-1052.

【29】Dani A, Huang B, Bergan J, et al. Superresolution imaging of chemical synapses in the brain[J]. Neuron, 2010, 68(5): 843-856.

【30】Shim S H, Jones S A, He J, et al. Live-cell super-resolution fluorescence imaging at high spatiotemporal resolutions[J]. Biophysical Journal, 2012, 102(3): 224a.

【31】Sigal Y M, Speer C M, Babcock H P, et al. Mapping synaptic input fields of neurons with super-resolution imaging[J]. Cell, 2015, 163(2): 493-505.

【32】Beliveau B J, Boettiger A N, Avendao M S, et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes[J]. Nat Commun, 2015, 6: 7147.

引用该论文

Yang Jie,Tian Cuiping,Zhong Guisheng. Stochastic Optical Reconstruction Microscopy Imaging Technique and Application[J]. Acta Optica Sinica, 2017, 37(3): 0318005

杨洁,田翠萍,钟桂生. 随机光学重构显微成像技术及其应用[J]. 光学学报, 2017, 37(3): 0318005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF