首页 > 论文 > 中国激光 > 44卷 > 4期(pp:401005--1)

基于光-光同步放大的时域整形技术

Temporal Shaping Technology Based on Optical-Optical Synchronization Amplification

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在高能量抽运激光脉冲的传输与放大过程中, 激光放大器的增益饱和效应会导致激光脉冲产生时域畸变, 使输出激光脉冲无法保持其时域的平顶型分布。因此, 需要对抽运激光脉冲进行时域预整形, 以补偿放大器中的增益饱和。提出了一种基于光-光同步放大的时域整形技术来补偿增益饱和引入的时域畸变。该技术基于传统的放大模型, 不受激光脉冲宽度的限制, 操作简单, 成本低廉。数值模拟结果表明, 利用所提技术可以对激光系统的输入脉冲进行有效的时域整形, 并且可以补偿增益饱和, 从而获得时域平顶分布的输出脉冲。

Abstract

The output laser pulse cannot sustain a flat-top temporal profile owing to the time domain distortion caused by gain saturation effect in laser amplifiers during the transmission and the amplification of high energy pump laser pulse. Therefore, the pump laser pulse needs to be pre-shaped to compensate the gain saturation in the amplifier. A temporal shaping technology based on optical-optical synchronization amplification is proposed to compensate the time domain distortion caused by gain saturation. The proposed technology is based on the conventional amplification model, and it is not restricted to the width of laser pulse. The proposed technology is simple to operate and costs low. Theoretical simulation results indicate that the effective temporal shaping for the input pulse of laser system can be achieved and the gain saturation can be compensated by the proposed technology, and the output pulse with flat-top shape in time domain can be obtained.

投稿润色
补充资料

中图分类号:O437.4

DOI:10.3788/cjl201744.0401005

所属栏目:激光物理

基金项目:国家自然科学基金(61322502,61535009,1127423) 、教育部长江学者创新团队(IRT13033)

收稿日期:2016-12-06

修改稿日期:2017-01-06

网络出版日期:--

作者单位    点击查看

储玉喜:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术教育部重点实验室, 天津 300072
柴路:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术教育部重点实验室, 天津 300072
甘泽彪:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
梁晓燕:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
胡明列:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术教育部重点实验室, 天津 300072
王清月:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术教育部重点实验室, 天津 300072

联系人作者:储玉喜(chuyuxi@tju.edu.cn)

备注:储玉喜(1986-),男,博士,博士后,主要从事超短高能激光放大方面的研究。

【1】Dubietis A, Jonuauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 1992, 88(4-6): 437-440.

【2】Ross I N, Matousek P, New G H C, et al. Analysis and optimization of optical parametric chirped pulse amplification[J]. Journal of the Optical Society of America B, 2002, 19(12): 2945-2956.

【3】Xu L, Yu L, Liang X, et al. High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm[J]. Optics Letters, 2013, 38(22): 4837-4840.

【4】Yu L, Liang X, Xu L, et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm[J]. Optics Letters, 2015, 40(14): 3412-3415.

【5】Rothhardt J, Hdrich S, Gottschall T, et al. Generation of flattop pump pulses for OPCPA by coherent pulse stacking with fiber Bragg gratings[J]. Optics Express, 2009, 17(18): 16332-16341.

【6】Witte S, Eikema K S E. Ultrafast optical parametric chirped-pulse amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 296-307.

【7】Waxer L J, Bagnoud V, Begishev I A, et al. High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses[J]. Optics Letters, 2003, 28(14): 1245-1247.

【8】Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056.

【9】Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. Journal of Applied Physics, 1963, 34(8): 2346-2349.

【10】van Wonterghem B M, Murray J R, Campbell J H, et al. Performance of a prototype for a large-aperture multipass Nd∶glass laser for inertial confinement fusion[J]. Applied Optics, 1997, 36(21): 4932-4953.

【11】Schimpf D N, Ruchert C, Nodop D, et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Optics Express, 2008, 16(22): 17637-17646.

【12】Zeng Shuguang, Hu Jing, Wang Fei, et al. Pulse stacking scheme based on wavelength division multiplexing[J]. Acta Optica Sinica, 2013, 33(5): 0514001.
曾曙光, 胡 静, 王 飞, 等. 基于波分复用思想的啁啾脉冲堆积方法[J]. 光学学报, 2013, 33(5): 0514001.

【13】Zhang Yanli, Zhang Junyong, You Kewei, et al. Fast shape prediction in multi-pass amplifier of high power laser system[J]. Acta Optica Sinica, 2016, 36(7): 0714001.
张艳丽, 张军勇, 尤科伟, 等. 高功率激光多程放大系统中的快速波形预测[J]. 光学学报, 2016, 36(7): 0714001.

【14】Wang Chen, Liu Baiyu, Ouyang Xian, et al. Programmable arbitrary electrical waveform generator for temporal pulse shaping of high power laser system[J]. Acta Photonica Sinica, 2007, 36(7): 1181-1186.
王 琛, 刘百玉, 欧阳娴, 等. 用于高功率激光脉冲整形的可编程任意波形电脉冲发生器[J]. 光子学报, 2007, 36(7): 1181-1186.

【15】Lin Honghuan, Wang Jianjun, Sui Zhan, et al. Integrated all fiber optical pulse generation system for laser fusion driver[J]. Acta Physica Sinica, 2008, 57(3): 1771-1777.
林宏奂, 王建军, 隋 展, 等. 用于激光聚变驱动器的全光纤、全固化光脉冲产生系统[J]. 物理学报, 2008, 57(3): 1771-1777.

【16】Zheng Dongyang, Fang Xuguang, Cui Yajun, et al. Synthesis of Nd∶LiYF4 polycrystalline materials and crystal growth[J]. Journal of the Chinese Ceramic Society, 2014, 42(6): 756-760.
郑东阳, 方旭光, 崔亚军, 等. 掺钕氟化钇锂多晶料的合成与晶体生长[J]. 硅酸盐学报, 2014, 42(6): 756-760.

【17】Lowdermilk W H, Murray J E. The multipass amplifier: Theory and numerical analysis[J]. Journal of Applied Physics, 1980, 51(5): 2436-2444.

【18】Koechner W. Solid-state laser engineering[M]. 6th ed. Berlin: Springer, 1999.

引用该论文

Chu Yuxi,Chai Lu,Gan Zebiao,Liang Xiaoyan,Hu Minglie,Wang Qingyue. Temporal Shaping Technology Based on Optical-Optical Synchronization Amplification[J]. Chinese Journal of Lasers, 2017, 44(4): 0401005

储玉喜,柴路,甘泽彪,梁晓燕,胡明列,王清月. 基于光-光同步放大的时域整形技术[J]. 中国激光, 2017, 44(4): 0401005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF