首页 > 论文 > 光学学报 > 37卷 > 4期(pp:418001--1)

基于非均匀快速傅里叶变换的干涉合成孔径显微算法

Interferometric Synthetic Aperture Microscopy Algorithm Based on Nonuniform Fast Fourier Transform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在频域光学相干层析(SDOCT)系统中,样品仅在焦深范围内有高横向分辨率,在焦外分辨率降低。干涉合成孔径显微术(ISAM)是一种三维图像重构算法,可以改善离焦区的图像模糊状况,达到在所有成像深度中都可以获得焦平面处横向分辨率的效果,同时可以解决SDOCT中系统的横向分辨率和成像深度之间的矛盾。介绍了ISAM重构算法的原理和适用的范围,对比分析了传统SDOCT成像算法和经过ISAM重构算法处理的成像图像结果。将非均匀快速傅里叶变换引入ISAM算法,实验结果表明该方法极大地节省了运算时间,提升了实时成像高分辨率SDOCT系统的性能。

Abstract

In the spectral domain optical coherence tomography (SDOCT) system, we can get high transverse resolution only within the focal depth field. The transverse resolution degrades away from the focal plane. Interferometric synthetic aperture microscopy (ISAM) is a three-dimensional image reconstruction algorithm, which can make the out-of-focus image clearer, and a resolution in all planes that is equivalent to the resolution at the focal plane can be obtained. At the same time, the contradiction between the transverse resolution and the imaging depth in the SDOCT system can be solved. The principle of ISAM and its possible applications are introduced and the comparison between the reconstructed images by the traditional SDOCT method and the ISAM is performed. The nonuniform fast Fourier transform (NUFFT) algorithm is applied in ISAM. Experimental results show that the NUFFT can greatly reduce the operation time, improving the performance of real-time and high-resolution SDOCT system.

投稿润色
补充资料

中图分类号:TN247

DOI:10.3788/aos201737.0418001

所属栏目:显微

基金项目:国家自然科学基金(61275198,60978069)、国防基础科研资助项目

收稿日期:2016-09-05

修改稿日期:2016-11-28

网络出版日期:--

作者单位    点击查看

张运旭:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
高万荣:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
伍秀玭:南京理工大学电子工程与光电技术学院, 江苏 南京 210094

联系人作者:张运旭(yunxu_zhang@163.com)

备注:张运旭(1991-),男,硕士研究生,主要从事谱域OCT方面的研究。

【1】Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

【2】Liu Hao, Gao Wanrong, Chen Chaoliang. Handheld spectral domain optical coherence tomography for in vivo teeth imaging[J]. Chinese J Lasers, 2016, 43(2): 0204003.
刘 浩, 高万荣, 陈朝良. 手持式牙齿在体谱域光学相干层析成像系统研究[J]. 中国激光, 2016, 43(2): 0204003.

【3】Wang Ling, Tu Pei, Shi Ran, et al. Quantitative evaluation of three-dimensional bio-printed hydrogel scaffolds by optical coherence tomography[J]. Chinese J Lasers, 2015, 42(8): 0804003.
王 玲, 涂 沛, 石 然, 等. 光学相干层析成像技术用于三维生物打印水凝胶支架结构的定量评价研究[J]. 中国激光, 2015, 42(8): 0804003.

【4】Swanson E A, Huang D, Hee M R, et al. High-speed optical coherence domain reflectometry[J]. Optical Letters, 1992, 17(2): 151-153.

【5】Kasseck C, Lehmann K, Gerhardt N C, et al. Spectroscopic Fourier domain optical coherence tomography[C]. SPIE, 2007, 6627: 66271L.

【6】Leitgeb R A, Drexler W, Unterhuber A, et al. Ultrahigh resolution Fourier domain optical coherence tomography[J]. Optics Express, 2004, 12(10): 2156-2165.

【7】Li Peng, Huang Run, Gao Wanrong. Experiment research on optical coherence tomography of human skin[J]. Chinese J Lasers, 2009, 36(10): 2498-2502.
李 鹏, 黄 润, 高万荣. 光学相干层析术在人体皮肤成像方面的实验研究[J]. 中国激光, 2009, 36(10): 2498-2502.

【8】Hermann B, Fernández E J, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 2004, 29(18): 2142-2144.

【9】Ding Z H, Ren H W, Zhao Y H, et al. High-resolution optical coherence tomography over a large depth range with an axicon lens[J]. Optics Letters, 2002, 27(4): 243-245.

【10】Cobb M J, Liu X M, Li X D. Continuous focus tracking for real-time optical coherence tomography[J]. Optics Letters, 2005, 30(13): 1680-1682.

【11】Mo J H, de Groot M, de Boer J F. Focus-extension by depth-encoded synthetic aperture in optical coherence tomography[J]. Optics Express, 2013, 21(8): 10048-10061.

【12】Holmes J, Hattersley S, Stone N, et al. Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications[C]. SPIE, 2008, 6847: 68470O.

【13】Ralston T S, Marks D L, Carney P S, et al. Interferometric synthetic aperture microscopy[J]. Nature Physics, 2007, 3(2): 129-134.

【14】Ralston T S, Adie S G, Marks D L, et al. Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography[J]. Optics Letters, 2010, 35(10): 1683-1685.

【15】Ralston T S, Marks D L, Boppart S A, et al. Inverse scattering for high-resolution interferometric microscopy[J]. Optics Letters, 2006, 31(24): 3585-3587.

【16】Bruno O, Chaubell J. One-dimensional inverse scattering problem for optical coherence tomography[J]. Inverse Problems, 2005, 21(2): 499-524.

【17】Bruno O P, Chaubell J. Inverse scattering problem for optical coherence tomography[J]. Optics Letters, 2003, 28(21): 2049-2051.

【18】Subiza B, Gimeno-Nieves E, Lopez-Sanchez J M, et al. Nonuniform FFTs (NUFFT) algorithms applied to SAR imaging[C]. SPIE, 2004, 5236: 72-79.

【19】Ralston T S, Marks D L, Carney P S, et al. Real-time interferometric synthetic aperture microscopy[J]. Optics Express, 2008, 16(4): 2555-2569.

【20】Dutt A, Rokhlin V. Fast Fourier transforms for nonequispaced data[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1368-1393.

【21】Fessler J A, Sutton B P. Nonuniform fast Fourier transforms using min-max interpolation[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 560-574.

【22】Ren Bailing. Research on active millimeter-wave imaging algorithms and system for security inspection[D]. Beijing: Beijing Institute of Technology, 2014.
任百玲. 主动毫米波安检成像算法及系统研究[D]. 北京: 北京理工大学, 2014.

【23】Li Peng. Theories and experiments on optical coherence tomography[D]. Nanjing: Nanjing University of Science and Technology, 2010.
李 鹏. 光学相干层析术理论与实验研究[D]. 南京: 南京理工大学, 2010.

引用该论文

Zhang Yunxu,Gao Wanrong,Wu Xiupin. Interferometric Synthetic Aperture Microscopy Algorithm Based on Nonuniform Fast Fourier Transform[J]. Acta Optica Sinica, 2017, 37(4): 0418001

张运旭,高万荣,伍秀玭. 基于非均匀快速傅里叶变换的干涉合成孔径显微算法[J]. 光学学报, 2017, 37(4): 0418001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF