首页 > 论文 > 光学学报 > 37卷 > 4期(pp:430001--1)

海面漂浮绿潮生物量光谱特征及估算模型

Spectral Characteristics and Estimation Models of Floating Green Tide Biomass on Sea Surface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

海上漂浮绿潮生物量的估算对实现绿潮处置资源高效配置、提高应急处置效率具有重要意义。利用现场实验获取的漂浮绿潮单位面积生物量及其地物反射光谱数据,分析了漂浮绿潮光谱特征和多种光谱指数与单位面积生物量之间的响应关系,基于此构建并验证了漂浮绿潮生物量估算模型。结果显示漂浮绿潮近红外波段反射率与单位面积生物量之间存在强相关关系(相关系数R≈0.8);光谱指数以及960 nm反射峰和1060 nm吸收峰峰值与漂浮绿潮单位面积生物量显著相关(R>0.7);基于R960/R670和R1060/R670(R670,R960,R1060分别为670,960,1060 nm处的反射率)构建的漂浮绿潮生物量指数估算模型具有较高的精度(R2≈0.9,相对误差RPE≈27%)。研究结果为利用遥感技术实现海面漂浮绿潮生物量估算提供了参考。

Abstract

Accurate estimation of the floating green tide biomass has great significance to make the emergency response plan and realize the highly efficient allocation of resources. Relationships among the biomass per unit area of the floating green tide, spectral characteristics and the most frequently used indices for the green tide detection are analyzed with the in-situ data of floating green tide biomass and reflectance. Based on the analysis the estimation models are established and verified. Results show that the near infrared reflectance is strongly correlated with the biomass per unit area of green tide (correlation coefficient R≈0.8); strong correlation exits between the biomass per unit area and the frequently used indices, the reflectance peak value is located at 960 nm and 1060 nm (R>0.7); estimation models of the floating green tide with exponent form based on R960/R670 and R1060/R670 (R670,R960,R1060 are the reflectance at 670,960,1060 nm, respectively) have the highest accuracy (R2≈0.9, relative error RPE≈27%). Research results can provide references for the floating green tide estimation on the sea surface by the remote sensing technology.

投稿润色
补充资料

中图分类号:O433.4

DOI:10.3788/aos201737.0430001

所属栏目:光谱学

收稿日期:2016-09-27

修改稿日期:2016-11-29

网络出版日期:--

作者单位    点击查看

肖艳芳:国家海洋局第一海洋研究所, 山东 青岛 266061
张杰:国家海洋局第一海洋研究所, 山东 青岛 266061
崔廷伟:国家海洋局第一海洋研究所, 山东 青岛 266061
巩加龙:中国海洋大学信息科学与工程学院, 山东 青岛 266100
夏深圳:南京大学地理与海洋科学学院, 江苏 南京 210023
刘荣杰:国家海洋局第一海洋研究所, 山东 青岛 266061
秦平:中国海洋大学信息科学与工程学院, 山东 青岛 266100
牟冰:中国海洋大学信息科学与工程学院, 山东 青岛 266100

联系人作者:肖艳芳(xiaoyanfang@fio.org.cn)

备注:肖艳芳(1985-),女,博士,助理研究员,主要从事海洋光学遥感方面的研究。

【1】Liang Zongying, Lin Xiangzhi, Ma Mu, et al. A preliminary study of the Enteromorpha prolifera drift gathering causing the green tide phenomenon[J]. Periodical of Ocean University of China, 2008, 38(4): 601-604.
梁宗英, 林祥志, 马 牧, 等. 浒苔漂流聚集绿潮现象的初步分析[J]. 中国海洋大学学报, 2008, 38(4): 601-604.

【2】Blomster J, Bck S, Fewer D P, et al. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides[J]. American Journal of Botany, 2002, 89(11): 1756-1763.

【3】Nelson T A, Nelson A V, Tjoelker M. Seasonal and spatial patterns of "green tides" (Ulvoid algal blooms) and related water quality parameters in the coastal waters of Washington state, USA[J]. Botanica Marina, 2003, 46(3): 263-275.

【4】Hiraoka M, Ohno M, Kawaguchi S, et al. Crossing test among floating Ulva thalli forming ‘greed tide’ in Japan[J]. Hydrobiologia, 2004, 512(1-3): 239-245.

【5】Merceron M, Antoine V, Auby I, et al. In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks[J]. Science of the Total Environment, 2007, 384(1-3): 293-305.

【6】Wang Chao. Primary studies on the harmful effects and mechanisms of Ulva prolifera green tide[D]. Beijing: Chinese Academy of Sciences, 2010.
王 超. 浒 苔(Ulva prolifera)绿潮危害效应与机制的基础研究[D]. 北京: 中国科学院, 2010.

【7】Li Sanmei, Li Yajun, Dong Haiying, et al. Satellite remote sensing application to enteromorpha prolifera monitoring in the Yellow Sea[J]. Journal of Applied Meteorological Science, 2010, 21(1): 76-82.
李三妹, 李亚君, 董海鹰, 等. 浅析卫星遥感在黄海浒苔监测中的应用[J]. 应用气象学报, 2010, 21(1): 76-82.

【8】Jiang Xingwei, Zou Yarong, Wang Hua, et al. Application study on quick extraction of Entermorpha prolifera information using SAR data[J]. Acta Oceanologica Sinica, 2009, 31(2): 63-68.
蒋兴伟, 邹亚荣, 王 华, 等. 基于SAR快速提取浒苔信息应用研究[J]. 海洋学报, 2009, 31(2): 63-68.

【9】Fan Shiliang, Fu Mingzhu, Li Yan, et al. Origin and development of Huanghai (Yellow) Sea green-tides in 2009 and 2010[J]. Acta Oceanologica Sinica, 2012, 34(6): 187-194.
范士亮, 傅明珠, 李 艳, 等. 2009-2010年黄海绿潮起源于发生过程调查研究[J]. 海洋学报, 2012, 34(6): 187-194.

【10】Liu Xiangqing. Distributions of floating green algae and developing processes in the Yellow Sea[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2014.
刘湘庆. 黄海绿潮形成过程中漂浮绿藻及微观繁殖体时空分布研究[D]. 青岛: 国家海洋局第一海洋研究所, 2014.

【11】Shi W, Wang M. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J]. Journal of Geophysical Research, 2009, 114(C12): C12010.

【12】Zhang Juan. The method and the software implementation of monitoring macroalgae by remote sensing[D]. Chengdu: University of Electronic Science and Technology of China, 2009.
张 娟. 浒苔遥感监测方法研究及软件实现-以青岛奥帆赛场及周边海域为例[D]. 成都: 电子科技大学, 2009.

【13】Hu C M, Li D Q, Chen C S, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research, 2010, 115(C5): C05017.

【14】Sun Ling, Guo Maohua, Li Sanmei, et al. Enteromorpha prolifera monitoring with FY-3A MERSI around the sea area of Qingdao[J]. Remote Sensing Information, 2010(1): 64-68.
孙 凌, 郭茂华, 李三妹, 等. 用FY-3A MERSI进行青岛海域浒苔监测[J]. 遥感信息, 2010(1): 64-68.

【15】Xing Qianguo, Zheng Xiangyang, Shi Ping, et al. Monitoring "green tide" in the Yellow Sea and the East China Sea using multi-temporal and multi-source remote sensing images[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1644-1647.
邢前国, 郑向阳, 施 平, 等. 基于多源、多时相遥感影像的黄、东海绿潮影响区检测[J]. 光谱学与光谱分析, 2011, 31(6): 1644-1647.

【16】Gu Xingfa, Chen Xingfeng, Yin Qiu, et al. Stereoscopic remote sensing used in monitoring Entermorpha prolifera disaster in Chinese Yellow Sea[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1627-1632.
顾行发, 陈兴峰, 尹 球, 等. 黄海浒苔灾害遥感立体监测[J]. 光谱学与光谱分析, 2011, 31(6): 1627-1632.

【17】Cui T W, Zhang J, Sun L E, et al. Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation[J]. International Journal of Remote Sensing, 2012, 33(17): 5513-5527.

【18】Son Y B, Min J E, Ryu J H. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using geostationary ocean color imager (GOCI) data[J]. Ocean Science Journal, 2012, 47(3): 359-375.

【19】Lu Xia, Xie Hongquan, Zhou Li, et al. Curve estimation based on time series reflectance spectra of Entermorpha prolifera[J]. Transactions of Oceanology and Limnology, 2012(3): 96-102.
卢 霞, 谢宏全, 周 立, 等. 浒苔藻体时间序列光谱特征的曲线估计[J]. 海洋湖沼通报, 2012(3): 96-102.

【20】Lu Xia, Zhou Li, Xie Hongquan, et al. Spectra characteristics analysis of Entermorpha prolifera in Lianyungang sea area[J]. Marine Environmental Science, 2011, 30(6): 814-818.
卢 霞, 周 立, 谢宏全, 等. 连云港海域浒苔藻体的光谱特征分析[J]. 海洋环境科学, 2011, 30(6): 814-818.

【21】Elijah R, Amina R, Mads S T, et al. Spectral definition of the macro-algae Ulva curvata in the back-barrier bays of the eastern shore of Virginia, USA[J]. International Journal of Remote Sensing, 2012, 33(2): 586-603.

【22】Hu C M. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10): 2118-2129.

【23】Zhang Hailong, Sun Deyong, Li Junsheng, et al. Remote sensing algorithm for detecting green tide in China coastal waters based on GF1-WFV and HJ-CCD data[J]. Acta Optica Sinica, 2016, 36(6): 0601004.
张海龙, 孙德勇, 李俊生, 等. 基于GF1-WFV和HJ-CCD数据的我国近海绿潮遥感监测算法研究[J]. 光学学报, 2016, 36(6): 0601004.

【24】Wang Ting, Shi Xiaoyong, Zhang Chuansong, et al. Variations in nutrient concentration and distribution for green tide of Entermorpha prolifera occurrence areas of the Yellow Sea in 2008[J]. Marine Science Bulletin, 2011, 30(5): 578-582.
王 婷, 石晓勇, 张传松, 等. 2008年黄海浒苔绿潮爆发区营养盐浓度变化及分布特征[J]. 海洋通报, 2011, 30(5): 578-582.

【25】Wu Mengquan, Guo Hao, Zhang Anding, et al. Research on the characteristics of Ulva prolifera in Shandong peninsula during 2008-2012 based on MODIS data[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1312-1318.
吴孟泉, 郭 浩, 张安定, 等. 2008-2012年山东半岛海域浒苔时空分布特征研究[J]. 光谱学与光谱分析, 2014, 34(5): 1312-1318.

【26】Xiao Yanfang. The scale effect and sensitivity analysis for vegetation biochemical information retrieval by remote sensing[D]. Beijing: Capital Normal University, 2013: 76-82.
肖艳芳. 植被理化参数反演的尺度效应与敏感性分析[D]. 北京: 首都师范大学, 2013: 76-82.

【27】Xiao Y F, Zhao W J, Zhou D M, et al. Sensitivity analysis of vegetation reflectance to biochemical and biophysical variables at leaf, canopy and regional scales[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4014-4024.

【28】Yan Chunyan. Study on methods and models for vegetation biochemical information retrieval by remote sensing[D]. Beijing: Chinese Academy of Sciences, 2003.
颜春燕. 遥感提取植被生化组分信息方法与模型研究[D]. 北京: 中国科学院, 2003.

【29】Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[C]. Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, 1974: 309-317.

【30】Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment[J]. Remote Sensing of Environment, 1991, 35(2-3): 161-173.

【31】Huete A, Diadan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1-2): 195-213.

【32】Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J]. Remote Sensing of Environment, 2005, 95(2): 177-194.

【33】Shanmugam P, Suresh M, Sundarabalan B. OSABT: an innovative algorithm to detect and characterize ocean surface algal blooms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 1879-1892.

引用该论文

Xiao Yanfang,Zhang Jie,Cui Tingwei,Gong Jialong,Xia Shenzhen,Liu Rongjie,Qin Ping,Mou Bing. Spectral Characteristics and Estimation Models of Floating Green Tide Biomass on Sea Surface[J]. Acta Optica Sinica, 2017, 37(4): 0430001

肖艳芳,张杰,崔廷伟,巩加龙,夏深圳,刘荣杰,秦平,牟冰. 海面漂浮绿潮生物量光谱特征及估算模型[J]. 光学学报, 2017, 37(4): 0430001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF