首页 > 论文 > 光学学报 > 37卷 > 4期(pp:406003--1)

基于遗传算法与Zoom FFT的光频域反射仪快速高精度频谱分析

Fast and High-Resolution Spectrum Analysis of Optical Frequency Domain Reflectometry Based on Genetic Algorithm and Zoom FFT

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

分析了快速傅里叶变换(FFT)在光频域反射仪(OFDR)频谱分析中应用的局限性,论述了快速傅里叶变换-分段Chirp-Z变换(FFT-SCZT)算法的不足。提出了一种基于改进的遗传算法(IGA)和Zoom FFT(ZFFT)的快速高精度频谱分析(FFT-IGA-ZFFT)算法。描述了该算法的计算过程,并推导了算法的时间复杂度。研究结果表明,在同一运算平台下,处理107个OFDR采样数据时,FFT算法耗时3.130 s,FFT-SCZT算法耗时1.993 s,而FFT-IGA-ZFFT算法仅耗时0.525 s即可获得同等精度。FFT-IGA-ZFFT算法在处理速度上具有明显的优势。

Abstract

We analyze the limitation of the fast Fourier transform (FFT) method applied to the spectrum analysis of the optical frequency domain reflectometry (OFDR). The shortcomings of the fast Fourier transform-segmented Chirp-Z transform (FFT-SCZT) algorithm are discussed. Based on an improved genetic algorithm (IGA) and Zoom FFT (ZFFT), a fast and high-resolution spectrum analysis algorithm, FFT-IGA-ZFFT algorithm, is proposed. The computation procedures of the proposed algorithm are described and its time complexity is deduced. The experimental result shows that the FFT algorithm costs 3.130 s, the FFT-SCZT algorithm costs 1.993 s, and the FFT-IGA-ZFFT algorithm costs 0.525 s when 107 OFDR sampling data is processed in the same computing platform and with the same resolution. The FFT-IGA-ZFFT algorithm is outstanding in term of processing speed.

投稿润色
补充资料

中图分类号:TN913.7

DOI:10.3788/aos201737.0406003

所属栏目:光纤光学与光通信

基金项目:国家自然科学杰出青年基金(61225004)

收稿日期:2016-11-08

修改稿日期:2016-12-27

网络出版日期:--

作者单位    点击查看

郁胜过:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
张玲:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
谢玮霖:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
董毅:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
胡卫生:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240

联系人作者:郁胜过(rain_truman@sjtu.edu.cn)

备注:郁胜过(1991-),男,硕士研究生,主要从事光纤通信和测量方面的研究。

【1】Geng J H, Spiegelberg C, Jiang S B. Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry[J]. IEEE Photonics Technology Letters, 2005, 17(9): 1827-1829.

【2】Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674.

【3】Frigo M, Johnson S G. FFTW: Fastest Fourier transform in the west[J]. Astrophysics Source Code Library, 2012, 1: 01015.

【4】Ma C, Zhou Q, Qin J, et al. Fast spectrum analysis for an OFDR using the FFT and SCZT combination approach[J]. IEEE Photonics Technology Letters, 2016, 28(6): 657-660.

【5】Oppenheim A V, Schafer R W. Discrete-time signal processing[M]. Delhi: Pearson Higher Education, 2010.

【6】Rabiner L, Schafer R W, Rader C M. The chirp z-transform algorithm[J]. IEEE Transactions on Audio and Electroacoustics, 1969, 17(2): 86-92.

【7】Ding Kang, Pan Chenghao, Li Weihua. Comparison of spectral analysis between FFT and Chirp-Z transform[J]. Journal of Vibration and Shock, 2006, 25(6): 9-12.
丁 康, 潘成灏, 李巍华. ZFFT与Chirp-Z变换细化选带的频谱分析对比[J]. 振动与冲击, 2006, 25(6): 9-12.

【8】Zhao Hongqiang. Analysis of spectrum zoom algorithms[J]. Journal of Sichuan Military Science and Technology, 2013, 34(5): 105-109.
赵宏强. 频谱细化算法分析[J]. 四川兵工学报, 2013, 34(5): 105-109.

【9】Liang Ying, Jin Ming, Qiao Xiaolin. An improved genetic algorithm[J]. Science Technology and Engineering, 2012, 20(15): 3636-3639.
梁 影, 金 铭, 乔晓林. 一种改进的遗传算法[J]. 科学技术与工程, 2012, 20(15): 3636-3639.

【10】Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

【11】Golberg D E. Genetic algorithms in search, optimization, and machine learning[M]. Boston: Addion-Wesley, 1989: 102.

【12】Huang M, Liu N, Liang X. An improved niche genetic algorithm[C]. IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, 2: 291-293.

【13】Hoyer E A, Stork R F. The zoom FFT using complex modulation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1977, 2: 78-81.

【14】Hu Guangshu. Digital signal processing: Theory, algorithm and implementation[M]. Beijing: Tsinghua University Press, 2003.
胡广书. 数字信号处理: 理论, 算法与实现[M]. 北京: 清华大学出版社, 2003.

【15】Cetin A E, Gerek O N, Yardimci Y. Equiripple FIR filter design by the FFT algorithm[J]. IEEE Signal Processing Magazine IEEE, 1997, 14(2): 60-64.

【16】Pun C K S, Chan S C, Yeung K S, et al. On the design and implementation of FIR and IIR digital filters with variable frequency characteristics[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2002, 49(11): 689-703.

【17】Xie Weilin, Dong Yi, Zhou Qian, et al. Phase noise analysis of optical frequency domain reflectometry[J]. Acta Optica Sinica, 2011, 31(7): 0706003.
谢玮霖, 董 毅, 周 潜, 等. 光频域反射技术中激光相位噪声影响分析[J]. 光学学报, 2011, 31(7): 0706003.

【18】Qin J, Zhou Q, Xie W L, et al. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop[J]. Optics Letters, 2015, 40(19): 4500-4503.

【19】Xu Yan, Qin Jie, Xie Weilin, et al. Linearized frequency-swept laser source generation based on pre-distortion and optical phase-locked loop[J]. Chinese J Lasers, 2016, 43(2): 0202002.
许 妍, 秦 杰, 谢玮霖, 等. 基于预畸变和光锁相的线性扫频激光源生成[J]. 中国激光, 2016, 43(2): 0202002.

【20】Zhou Q, Xie W L, Xia Z Y, et al. Compensation of phase error in optical frequency-domain reflectometry using delay-matched sampling[J]. Optical Engineering, 2014, 53(7): 074103.

引用该论文

Yu Shengguo,Zhang Ling,Xie Weilin,Dong Yi,Hu Weisheng. Fast and High-Resolution Spectrum Analysis of Optical Frequency Domain Reflectometry Based on Genetic Algorithm and Zoom FFT[J]. Acta Optica Sinica, 2017, 37(4): 0406003

郁胜过,张玲,谢玮霖,董毅,胡卫生. 基于遗传算法与Zoom FFT的光频域反射仪快速高精度频谱分析[J]. 光学学报, 2017, 37(4): 0406003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF