首页 > 论文 > 光学学报 > 37卷 > 4期(pp:411002--1)

基于层析传感的自适应光学眼底成像系统

Fundus Imaging System Based on Tomographic Adaptive Optics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了解决传统自适应光学系统校正视场小的问题,提出了一种层析自适应光学眼底成像系统。以Zemax为工具,Liou-Brennan(LB)眼模型为仿真对象,研究了层析自适应光学眼底成像系统的性能。分析了20°视场内的眼底像差特性,用Zernike边缘多项式描述眼底像差,获得了不同视场内眼底像差的类型和大小。对比了传统自适应光学和层析自适应光学眼底成像系统的性能。结果表明,相较于传统自适应光学,层析自适应光学系统可将校正视场从1.2°扩大至3°。确定了传统自适应光学和层析自适应光学眼底成像系统中变形镜的最佳共轭位置,均位于出瞳面前3 mm,此位置与人眼角膜共轭。

Abstract

We propose a fundus imaging system based on the tomographic adaptive optics instead of conventional adaptive optics to increase the limited field of view. The performance of the proposed system is studied with Zemax and the simulation object, Liou-Brennan (LB) eye model. The human eye aberrations are described by Zernike fringe polynomials within 20° field of view to obtain the type and value of fundus aberrations. The results indicate that the proposed system extends the field of view from 1.2° to 3° compared with the conventional adaptive optics system. How to select the conjugated position of the deformable mirror for adaptive optics based fundus imaging systems is investigated. It figures that the deformable mirror can be optically conjugated at 3 mm before the exit pupil of eye for both the conventional adaptive optics system and the proposed system, and the position is also conjugated with cornea.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/aos201737.0411002

所属栏目:成像系统

基金项目:国家自然科学基金(61471039)

收稿日期:2016-11-08

修改稿日期:2016-12-02

网络出版日期:--

作者单位    点击查看

武楚晗:北京理工大学光电学院自适应光学实验室, 北京 100081
张晓芳:北京理工大学光电学院自适应光学实验室, 北京 100081
陈蔚林:北京理工大学光电学院光电技术与信息系统实验室, 北京 100081
常军:北京理工大学光电学院光电技术与信息系统实验室, 北京 100081

联系人作者:武楚晗(1468690481@qq.com)

备注:武楚晗(1992-),男,硕士研究生,主要从事自适应光学方面的研究。

【1】Zhao Chaoyang. The research of the preliminary application of the retina adaptive optical imaging system in clinical ophthalmology[D]. Chongqing: Chongqing University, 2014: 1-8.
赵超阳. 视网膜自适应光学成像系统在眼科临床的初步应用研究[D]. 重庆: 重庆大学, 2014: 1-8.

【2】Kang Jian, Dai Yun, Liang Bo, et al. Binocular higher-order aberration correction and vision analysis system[J]. Acta Optica Sinica, 2015, 35(10): 1033001.
康 健, 戴 云, 梁 波, 等. 双眼高阶像差校正与视觉分析系统[J]. 光学学报, 2015, 35(10): 1033001.

【3】Babcock H W. The possibility of compensating astronomical seeing[J]. Publ Astron Soc Pac, 1953, 65(386): 651-236.

【4】Wu Yuke, Fan Yingchuan, Chen Li. New progress in adaptive optics in ophthalmic application[J]. Practical Journal of Clinical Medicine, 2013, 10(3): 168-170.
吴榆可, 樊映川, 陈 力. 自适应光学技术在眼科的应用新进展[J]. 实用医院临床杂志, 2013, 10(3): 168-170.

【5】Xiao Fei, Dai Yun, Zhao Junlei, et al. High-resolution retinal imaging system with dual deformable mirrors[J]. Acta Optica Sinica, 2015, 35(5): 0501004.
肖 飞, 戴 云, 赵军磊, 等. 双变形镜人眼视网膜高分辨率显微成像系统[J]. 光学学报, 2015, 35(5): 0501004.

【6】Xu Yan. The study of fundus camera based on eye model[D]. Tianjin: Nankai University, 2008: 3-5.
许 妍. 基于眼模型的眼底相机的研究[D]. 天津: 南开大学, 2008: 3-5.

【7】Liang J, Williams D R. Aberrations and retinal image quality of the normal human eye[J]. J Opt Soc Am A, 1997, 14(11): 2873-2883.

【8】Liang J, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J Opt Soc Am A, 1997, 14(11): 2884-2892.

【9】Hermann B, Fernández E J, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography[J]. Opt Lett, 2004, 29(18): 2142-2144.

【10】Cense B, Koperda E, Brown J M, et al. Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources[J]. Opt Express, 2009, 17(5): 4095-4111.

【11】Zawadzki R J, Jones S M, Pilli S, et al. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging[J]. Biomed Opt Express, 2011, 2(6): 1674-1686.

【12】Takayama K, Ooto S, Hangai M, et al. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy[J]. PLOS ONE, 2012, 7(3): 255-258.

【13】Jiang Wenhan. Adaptive optical technology[J]. Chinese Journal of Nature 2006, 28(1): 7-13.
姜文汉. 自适应光学技术[J]. 自然杂志, 2006, 28(1): 7-13.

【14】Jiang Wenhan, Zhang Yudong, Rao Changhui, et al. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31(9): 0900106.
姜文汉, 张雨东, 饶长辉,等. 中国科学院光电技术研究所的自适应光学研究进展[J]. 光学学报, 2011, 31(9): 0900106.

【15】Ling Ning, Zhang Yudong, Rao Xuejun, et al. A small adaptive optical imaging system for cells of living human retina[J]. Acta Optica Sinica, 2004, 24(9): 1153-1158.
凌 宁, 张雨东, 饶学军,等. 用于活体人眼视网膜观察的自适应光学成像系统[J]. 光学学报, 2004, 24(9): 1153-1158.

【16】Shi G H, Dai Y, Wang L, et al. Adaptive optics optical coherence tomography for retina imaging[J]. Chin Opt Lett, 2008, 6(6): 424-425.

【17】Lu J, Li H, Wei L, et al. Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope[C]. SPIE, 2009, 7519: 75191I.

【18】Cheng Shaoyuan, Cao Zhaoliang, Hu Lifa, et al. Design of scanning laser ophthalmoscope system with LC adaptive optics[J]. Infrared and Laser Engineering, 2011, 40(2): 253-257.
程少园, 曹召良, 胡立发, 等. 液晶自适应光学扫描激光检眼镜的光学系统设计[J]. 红外与激光工程, 2011, 40(2): 253-257.

【19】Williams D R. Imaging single cells in the living retina[J]. Vision Res, 2011, 51(13): 1379-1396.

【20】Zhang Xiaofang, Yu Xin, Yan Jixiang. Development and prospect of multi-conjugate adaptive optics[J]. Nanotechnol Precis Eng, 2004, 2(1): 76-80.
张晓芳, 俞 信, 阎吉祥. 多层共轭自适应光学的进展与展望[J]. 纳米技术与精密工程, 2004, 2(1): 76-80.

【21】Zhang X F, Wang L Q. Improvement in the performance of solar adaptive optics[J]. Res Astron Astrophys, 2014, 14(14): 471-484.

【22】Bedggood P A, Ashman R, Smith G, et al. Multiconjugate adaptive optics applied to an anatomically accurate human eye model[J]. Opt Express, 2006, 14(18): 8019-8030.

【23】Ragazzoni R, Marchetti E, Rigaut F. Modal tomography for adaptive optics[J]. Astron Astrophys, 1999, 342(3): L53-L56.

【24】Dong B, Ren D Q, Zhang X. Numerical analysis of modal tomography for solar multi-conjugate adaptive optics[J]. Res Astron Astrophys, 2012, 12(4): 465-471.

【25】Zhang Lanqiang. Solar multi-conjugate adaptive optics for high resolution imaging[D]. Beijing: University of Chinese Academy of Sciences, 2014: 41-43.
张兰强. 太阳高分辨力成像多层共轭自适应光学技术研究[D]. 北京: 中国科学院大学, 2014: 41-43.

【26】Wang Yang, Wang Zhaoqi, Liu Ming, et al. Study on wavefront aberrations of human eyes at wide field of view based on individual eye model[J]. Acta Optica Sinica, 2006, 26(11): 1727-1733.
王 杨, 王肇圻, 刘 铭, 等. 基于个性化人眼模型的大视场波像差特性的研究[J]. 光学学报, 2006, 26(11): 1727-1733.

【27】Dubinin A, Cherezova T, Kudryashov A. Methods of isoplanatic patch widening in human eye retina imaging[C]. SPIE, 2008, 6844: 684406.

引用该论文

Wu Chuhan,Zhang Xiaofang,Chen Weilin,Chang Jun. Fundus Imaging System Based on Tomographic Adaptive Optics[J]. Acta Optica Sinica, 2017, 37(4): 0411002

武楚晗,张晓芳,陈蔚林,常军. 基于层析传感的自适应光学眼底成像系统[J]. 光学学报, 2017, 37(4): 0411002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF