首页 > 论文 > 光学学报 > 37卷 > 4期(pp:423001--1)

星载成像光谱仪退偏器的设计及测试

Design and Test of Depolarizer for Space-Borne Imaging Spectrometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为保证星载成像光谱仪测量结果的准确性,设计了双巴比涅退偏器。首先利用电磁波理论及光波传输理论分析了双巴比涅退偏器的工作原理,接着根据偏振光在双折射晶体中的传播公式设计出适当的该退偏器的楔角,最后搭建一套偏振测试装置,对研制完成的双巴比涅退偏器的退偏性能进行测试。测试结果表明:该双巴比涅退偏器在-15~15 ℃入射角范围内具有较好的退偏性能。退偏器楔角选择6°时,能在不影响成像质量的前提下较好地对探测波段退偏,且退偏度不受方位角及频率的影响,退偏度优于99%。该退偏器具有退偏度高、透射比高、性能稳定、体积小等优点。由于测量系统误差,测量不确定度为0.00290。

Abstract

To guarantee the measurement accuracy of the space-borne imaging spectrometer, the dual Babinet compensator pseudo-depolarizer (DBCP) is designed. The principle of the DBCP is analyzed by utilizing the electromagnetic wave theory and light wave transmission theory, and a suitable wedge angle of the DBCP is schemed out based on the formula of polarized light propagation in birefringent crystal. The depolarization performance of the DBCP is worked out with a set-up polarization testing device. The results show that the DBCP has a better depolarization performance within the incidence angle range of -15~15 ℃. When the wedge angle is 6°, the depolarizer can realize depolarization at detection band with degree of depolarization better than 99%. Which is independent of the azimuth angle and frequency, and without affecting the imaging quality. Furthermore, the DBCP has many advantages, such as high degree of depolarization, high transmittance, stable performance and small volume. The uncertainty of measurement is 0.00290, because of the systems error.

投稿润色
补充资料

中图分类号:O436.3

DOI:10.3788/aos201737.0423001

所属栏目:光学器件

基金项目:北京市科技委员会项目(Z151100003615001)

收稿日期:2016-11-18

修改稿日期:2016-12-19

网络出版日期:--

作者单位    点击查看

毛靖华:中国科学院国家空间科学中心空间环境探测研究室, 北京 100190中国科学院大学, 北京 100049
王咏梅:中国科学院国家空间科学中心空间环境探测研究室, 北京 100190中国科学院大学, 北京 100049
石恩涛:中国科学院国家空间科学中心空间环境探测研究室, 北京 100190
张仲谋:中国科学院国家空间科学中心空间环境探测研究室, 北京 100190
王英鉴:中国科学院国家空间科学中心空间环境探测研究室, 北京 100190
江芳:中国科学院国家空间科学中心空间环境探测研究室, 北京 100190

联系人作者:毛靖华(renne1230@126.com)

备注:毛靖华(1990-),女,博士研究生,主要从事星载成像光谱仪地面定标技术方面的研究。

【1】Wang Yueming, Lang Junwei, Wang Jianyu. Status and prospect of space-Borne hyperspectral imaging technology[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010008.
王跃明, 郎均慰, 王建宇. 航天高光谱成像技术研究现状及展望[J]. 激光与光电子学进展, 2013, 50(1): 010008.

【2】Zhang Da, Zheng Yuquan. Hyperspectral remote sensing and its development and application review[J]. Optics & Optoelectronic Technology, 2013, 11(3): 67-73.
张 达, 郑玉权. 高光谱遥感的发展与应用[J]. 光学与光电技术, 2013, 11(3): 67-73.

【3】Xue Qingsheng. Optical system design of multi-model hyperspectral imager for spaced-Based atmospheric remote sensing[J]. Acta Optica Sinica, 2014, 34(8): 0822005.
薛庆生. 空间大气遥感高光谱成像仪光学系统设计[J]. 光学学报, 2014, 34(8): 0822005.

【4】Zhao Facai. The study on polarization correction of imaging spectrometer for space-borne ultraviolet atmospheric remote sensing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012: 17-34.
赵发财. 空间紫外大气遥感成像光谱仪偏振校正研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2012: 17-34.

【5】Hu Shuai, Gao Taichang, Li Hao, et al. Analysis on impact of atmospheric refraction on radiative transfer process at visible and infrared band[J]. Acta Optica Sinica, 2016, 36(6): 0601005.
胡 帅, 高太长, 李 浩, 等. 大气折射对可见近红外波段辐射传输的影响分析[J]. 光学学报, 2016, 36(6): 0601005.

【6】Zhang Xiaolin. Linear depolarization ratios characteristics of dust aerosol particles model[J]. Acta Optica Sinica, 2016, 36(8): 0829001.
张小林. 沙尘气溶胶粒子模型的线退偏比特性[J]. 光学学报, 2016, 36(8): 0829001.

【7】Dobber M R, Dirksen R J, Levelt P F, et al. Ozone monitoring instrument calibration[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(5): 1209-1238.

【8】Yu J, Jiang H B, Yang H, et al. Depolarization of white light generated by femtosecond laser pulse in KDP crystals[J]. Journal of the Optical Society of America B, 2011, 28(6): 1566-1570.

【9】Petrashen A G. Depolarization of radiation upon coherent excitation[J]. Optics and Spectroscopy, 2010, 109(6): 829-832.

【10】de Sande J C, Piquero G, Teijeiro C. Polarization changes at Lyot depolarizer output for different types of input beams[J]. Journal of the Optical Society of America A, 2012, 29(3): 278-284.

【11】Xue Qingsheng, Wang Shurong, Li Futian. Study on limb imaging spectrometer with grating dispersion[J]. Acta Optica Sinica, 2010, 30(5): 1516-1521.
薛庆生, 王淑荣, 李福田. 光栅色散临边成像光谱仪的研究[J]. 光学学报, 2010, 30(5): 1516-1521.

【12】Zhao Facai, Wang Shurong, Qu Yi, et al. Design and analysis of a depolarizer for the space-borne grating imaging spectrometer[J]. Spectroscopy and Spectral Analysis, 2011, 31(7): 1991-1994.
赵发财, 王淑荣, 曲 艺, 等. 星载光栅成像光谱仪的退偏器设计与分析[J]. 光谱学与光谱分析, 2011, 31(7): 1991-1994.

【13】Wang Lei. Design and study of a novel spatial pseudodepolarizer[J]. Optical Technique, 2014(3): 209-213.
王 磊. 一种新型空间伪退偏器的设计与研究[J]. 光学技术, 2014(3): 209-213.

【14】Liao Yanbiao. Polarization optics[M]. Beijing: Science Press, 2003: 12-14.
廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003: 12-14.

【15】Chipman R A, Mcguire J P. Analysis of spatial pseudodepolarizers in imaging systems[J]. Optical Engineering, 1990, 29(12): 1478-1484.

【16】Ren Shufeng. Crystal birefringence of depolarization wave superposition method and optimization design[D]. Shandong: Qufu Normal University, 2014: 48-49.
任树锋. 晶体双折射退偏器的光波叠加分析方法与优化设计[D]. 山东: 曲阜师范大学, 2014: 48-49.

【17】Born M, Wolf E. Princeples of optics[M]. YANG Jia sun Transl. Beijing: Publishing House of Electronics Industry, 2005: 78-80.
马科思·玻恩, 埃米尔·沃耳夫. 光学原理[M]. 杨葭荪, 译. 北京: 电子工业出版社, 2005: 78-80.

引用该论文

Mao Jinghua,Wang Yongmei,Shi Entao,Zhang Zhongmou,Wang Yingjian,Jiang Fang. Design and Test of Depolarizer for Space-Borne Imaging Spectrometer[J]. Acta Optica Sinica, 2017, 37(4): 0423001

毛靖华,王咏梅,石恩涛,张仲谋,王英鉴,江芳. 星载成像光谱仪退偏器的设计及测试[J]. 光学学报, 2017, 37(4): 0423001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF