首页 > 论文 > 光学学报 > 37卷 > 4期(pp:414004--1)

激光喷丸强化IN718合金晶粒重排与疲劳特性

Grain Rearrangement and Fatigue Property of IN718 Alloy Strengthened by Laser Peening

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了揭示激光喷丸(LP)强化IN718合金疲劳寿命增益的机制,研究了合金喷丸前后晶粒重排与疲劳特性的关系。结果表明,LP后试样表层的塑性形变深度最大可达33.7 μm,合金的最大疲劳寿命增益可达188%;激光冲击波诱导产生的表层残余压应力随激光功率密度的增大而增大,但增幅逐渐减小; 疲劳试验后,表层残余应力出现了52%的释放;LP后试样表层晶粒出现细化现象,细化深度达到175 μm; 位错滑移和位错攀移以及孪晶等共同作用使原始晶粒内形成了亚晶粒,最终细化了晶粒组织。

Abstract

In order to clarify the mechanism of fatigue life enhancement of IN718 alloy strengthened by laser peening (LP), the relationship between the grain rearrangement and fatigue property of the alloy before and after LP is studied. The results show that, after LP, the maximum plastic deforming depth of sample surface reaches 33.7 μm, and the maximum fatigue life enhancement of the alloy reaches 188%. With the increase of laser power density, the surface residual compressive stress induced by laser shock wave increases, but the amplification decreases gradually. After the fatigue test, the release of the surface residual stress of 52% appears. The grain refinement phenomenon is found on the sample surface after LP, and the refining depth reaches 175 μm. The interaction among the dislocation sliding, dislocation climbing and twin crystal results in the generation of subgrains, and eventually the grain structure is refined.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/aos201737.0414004

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51405204)、中国博士后科学基金(2013M540417,2014T70477)、江苏省博士后科研资助(1401065B)、江苏大学高级人才启动基金(13JDG109)、江苏省大型工程装备检测与控制重点建设实验室开放课题(JSKLEDC201503)、江苏大学“青年骨干教师培养工程”资助项目(2016016)、常州市高技术研究重点实验室资助项目(CM20153001)

收稿日期:2016-11-22

修改稿日期:2016-12-25

网络出版日期:--

作者单位    点击查看

黄舒:江苏大学机械工程学院, 江苏 镇江 212013
盛杰:江苏大学机械工程学院, 江苏 镇江 212013
谭文胜:常州信息职业技术学院常州市大型塑料件智能化制造重点实验室, 江苏 常州 213164
王作伟:江苏大学机械工程学院, 江苏 镇江 212013
孟宪凯:江苏大学机械工程学院, 江苏 镇江 212013
刘牧熙:江苏大学机械工程学院, 江苏 镇江 212013
杨小乐:江苏大学机械工程学院, 江苏 镇江 212013

联系人作者:黄舒(huangshu11@sina.com)

备注:黄舒(1983-),女,博士,副研究员,主要从事激光特种加工及材料疲劳特性方面的研究。

【1】Gnanamuthu D S. Laser surface treatment[J]. Optical Engineering, 1980, 19(5): 195783

【2】Vaithilingam J, Goodridge R D, Haguer J M, et al. The effect of laser remelting on the surface chemistry of Ti6AL4V components fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 232(9): 1-8.

【3】Lu Yunlong, Zhang Peilei, Ma Kai, et al. Microstructure and properties of laser alloying Ni-W-Si composite coating[J]. Rare Metal Materials and Engineering, 2016, 45(2): 375-380.
卢云龙, 张培磊, 马 凯, 等. 激光合金化Ni-W-Si涂层的组织与性能研究[J]. 稀有金属材料与工程, 2016, 45(2): 375-380.

【4】Yue L Y, Wang Z B, Li L. Modeling and simulation of laser cleaning of tapered micro-slots with different temporal pulses[J]. Optics & Laser Technology, 2013, 45(2): 533-539.

【5】Arias-González F, del Val J, Comesaa R, et al. Fiber laser cladding of nickel-based alloy on cast iron[J]. Applied Surface Science, 2015, 374: 197-205.

【6】Sheng J, Huang S, Zhou J Z, et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy[J]. Optics & Laser Technology, 2016, 77: 169-176.

【7】Zhou Jianzhong, Xu Zengchuang, Huang Shu, et al. Effects of different stress ratios on fatigue crack growth in laser shot peened 6061-T6 aluminum alloy[J]. Chinese J Lasers, 2011, 38(9): 0903006.
周建忠, 徐增闯, 黄 舒, 等. 基于不同应力比下激光喷丸强化6061-T6铝合金的疲劳裂纹扩展性能研究[J]. 中国激光, 2011, 38(9): 0903006.

【8】Gencalp Irizalp S, Saklakoglu N. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing[J]. Optics & Lasers in Engineering, 2016, 77: 183-190.

【9】Ren X D, Huang J J, Zhou W F, et al. Surface nano-crystallization of AZ91D magnesium alloy induced by laser shock processing[J]. Materials & Design, 2015, 86: 421-426.

【10】Zhang Y, You J, Lu J, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2010, 204(24): 3947-3953.

【11】Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science & Engineering A, 2010, 527(15): 3411-3415.

【12】Correa C, Gil-Santos A, Porro J A, et al. Eigenstrain simulation of residual stresses induced by laser shock processing in a Ti6Al4V hip replacement[J]. Materials & Design, 2015, 79: 106-114.

【13】Luo K Y, Lu J Z, Zhang Y K, et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science & Engineering A, 2011, 528(13-14): 4783-4788.

【14】Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

【15】Zhou Z, Gill A S, Telang A, et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy[J]. Experimental Mechanics, 2014, 54(9): 1597-1611.

【16】Gill A S, Telang A, Vasudevan V K. Characteristics of surface layers formed on Inconel 718 by laser shock peening with and without a protective coating[J]. Journal of Materials Processing Technology, 2015, 225: 463-472.

【17】Zhang Haifeng, Huang Shu, Sheng Jie, et al. Thermal relaxation of residual stress and grain evolution in laser peening IN718 alloy[J]. Chinese J Lasers, 2016, 43(2): 0203008.
章海峰, 黄 舒, 盛 杰, 等. 激光喷丸IN718镍基合金残余应力高温松弛及晶粒演变特征[J]. 中国激光, 2016, 43(2): 203008.

【18】Denda T, Kikuchi H, Teramoto T, et al. Effect of grain size on fatigue life and fatigue crack growth mechanism of IN718[J]. Transactions of the Japan Society of Mechanical Engineers, 1994, 60(576): 1746-1752.

【19】Li Meijuan, Hu Haiyun, Xing Xiusan. The relationship between fatigue life and grain size of polycrystalline metals[J]. Acta Physica Sinica, 2003, 52(8): 2092-2095.
李眉娟, 胡海云, 邢修三. 多晶体金属疲劳寿命随晶粒尺寸变化的理论研究[J]. 物理学报, 2003, 52(8): 2092-2095.

【20】Hattori H, Kitagawa M, Ohtomo A. Effect of grain size on high temperature low-cycle fatigue properties of Inconel 617[J]. Journal of the Iron and Steel Institute of Japan, 1982, 68(16): 2521-2530.

【21】Hammersley G, Hackel L A, Harris F. Surface prestressing to improve fatigue strength of components by laser shot peening[J]. Optics & Lasers in Engineering, 2000, 34(4-6): 327-337.

【22】Zhuang W Z, Halford G R. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue, 2001, 23(s1): 31-37.

【23】Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

【24】Sadananda K, Shahinian P. Review of the fracture mechanics approach to creep crack growth in structural alloys[J]. Engineering Fracture Mechanics, 1981, 15(3-4): 327-342.

【25】Dong Shizhu. Study of subgrain evolution under fatigue[J]. Machinery Design & Manufacture, 1995(6): 46-47.
董世柱. 疲劳状态下亚晶粒演变过程的研究[J]. 机械设计与制造, 1995(6): 46-47.

引用该论文

Huang Shu,Sheng Jie,Tan Wensheng,Wang Zuowei,Meng Xiankai,Liu Muxi,Yang Xiaole. Grain Rearrangement and Fatigue Property of IN718 Alloy Strengthened by Laser Peening[J]. Acta Optica Sinica, 2017, 37(4): 0414004

黄舒,盛杰,谭文胜,王作伟,孟宪凯,刘牧熙,杨小乐. 激光喷丸强化IN718合金晶粒重排与疲劳特性[J]. 光学学报, 2017, 37(4): 0414004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF