首页 > 论文 > 光学学报 > 37卷 > 4期(pp:410003--1)

改进型高效三角形相似法及其在深空图像配准中的应用

Improved Efficient Triangle Similarity Algorithm for Deep-Sky Image Registration

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

深空图像配准是深空图像应用的首要环节。针对目前基于三角形相似性的算法效率低下以及基于星点描述的算法难以应对复杂多变的深空成像环境等问题,提出了一种改进型高效三角形相似法并将其应用到深空图像配准中。首先统计分析了提取星点单像素强度和大小的直方图分布,并将星点划分为稳定星和普通星;然后,将稳定星和普通星分别同最近的两颗稳定星构建三角形;最后,通过引入相似度改进了三角形匹配中的权重矩阵,并提出了衡量三角形相似度的阈值自适应计算方法。实验结果表明,该方法在保证匹配精度的同时极大地提高了深空图像配准的效率,降低了系统资源占用率。

Abstract

Deep-sky image registration is the most important step in deep-sky image applications. Due to the low efficiency of these existing algorithms based on the triangle similarity, and the hardness of applying algorithms based on star description to deep-sky image registration, an improved efficient triangle similarity algorithm is proposed and applied in the deep-sky image registration. Firstly, the proposed method analyzes the single pixel intensity and star size histograms of detected stars, and divides the stars into stable and normal stars. Then, the triangles are constructed for stable star or normal star with its nearest two stable stars respectively. Finally, by introducing the degree of similarity, the improved voting matrix is used in triangle matching. During this step, an adaptive threshold calculation method is also proposed to measure the triangle similarity. Experimental results show that the proposed method greatly enhances the star matching efficiency, reduces the resources requirement and guarantees the high level of matching precision.

投稿润色
补充资料

中图分类号:TN911.73

DOI:10.3788/aos201737.0410003

所属栏目:图像处理

收稿日期:2016-11-30

修改稿日期:2016-12-25

网络出版日期:--

作者单位    点击查看

周海洋:浙江大学光电科学与工程学院, 浙江 杭州 310027
朱鑫炎:浙江大学光电科学与工程学院, 浙江 杭州 310027
余飞鸿:浙江大学光电科学与工程学院, 浙江 杭州 310027

联系人作者:周海洋(hyayh@zju.edu.cn)

备注:周海洋(1987-),男,博士研究生,主要从事图像配准算法方面的研究。

【1】Wu Mengqi, Li Zhongwei, Zhong Kai, et al. Adaptive point cloud registration method based on geometric features and photometric features[J]. Acta Optica Sinica, 2015, 35(2): 0215002.
伍梦琦, 李中伟, 钟 凯, 等. 基于几何特征和图像特征的点云自适应拼接方法[J]. 光学学报, 2015, 35(2): 0215002.

【2】Wei Shengbin, Wang Shaoqing, Zhou Changhe, et al. An iterative closest point algorithm based on biunique correspondence of point clouds for 3D reconstruction[J]. Acta Optica Sinica, 2015, 35(5): 0515003.
韦盛斌, 王少卿, 周常河, 等. 用于三维重建的点云单应性迭代最近点配准算法[J]. 光学学报, 2015, 35(5): 0515003.

【3】Zitová B, Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000.

【4】Szeliski R. Image alignment and stitching: a tutorial[J]. Found Trends Comput Graph Vis, 2006, 2(1): 1-105.

【5】Francisco G, Luis E, Juan D, et al. FOCAS automatic catalog matching algorithms[J]. Publications of the Astronomical Society of the Pacific, 1995, 107(717): 1119-1128.

【6】Marszalek M, Rokita P. Pattern matching with differential voting and median transformation derivation improved point-pattern matching algorithm for two-dimensional coordinate lists[C]. Computer Vision and Graphics: International Conference, 2006: 1002-1007.

【7】Tabur V. Fast algorithms for matching CCD images to a stellar catalogue[J]. Publications of the Astronomical Society of Australia, 2007, 24(4): 189-198.

【8】Ruiz-del-Solar J, Loncomilla P, Zorzi P. Applying SIFT descriptors to stellar image matching[C]. 13th Iberoamerican Congress on Pattern Recognition, 2008, 5197: 618-625.

【9】Dustin L, David W, Keir M, et al. Astrometry. net: blind astrometric calibration of arbitrary astronomical images[J]. The Astronomical Journal, 2010, 139(5): 1782-1800.

【10】Evangelidis G, Bauckhage C. Efficient and robust alignment of unsynchronized video sequences[C]. Pattern Recognition: 33rd DAGM Symposium, 2011: 286-295.

【11】Lee M, Cho M, Park I. Feature description using local neighborhoods[J]. Pattern Recognition Letters, 2015, 68(1): 76-82.

【12】Zhai You, Zeng Luan, Xiong Wei. Star matching based on invariant feature descriptor[J]. Optics and Precision Engineering, 2012, 20(11): 2531-2539.
翟 优, 曾 峦, 熊 伟. 基于不变特征描述符实现星点匹配[J]. 光学 精密工程, 2012, 20(11): 2531-2539.

【13】Gauglitz S, Turk M, Hllerer T. Improving keypoint orientation assignment[C]. Proceedings of the British Machine Vision Conference, 2011: 1-11.

【14】Yi K, Verdie Y, Fua P, et al. Learning to assign orientations to feature points[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 107-116.

【15】Arbabmir M, Mohammadi S, Salahshour S, et al. Improving night sky star image processing algorithm for star sensors[J]. Journal of the Optical Society of America, 2014, 31(4): 794-801.

【16】Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.

【17】Tuytelaars T, Mikolajczyk K. Local invariant feature detectors: a survey[J]. Foundations and Trends in Computer Graphics and Vision, 2008, 3(3): 177-280.

【18】Sedaghat A, Mokhtarzade M, Ebadi H. Uniform robust scale-invariant feature matching for optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4516-4527.

引用该论文

Zhou Haiyang,Zhu Xinyan,Yu Feihong. Improved Efficient Triangle Similarity Algorithm for Deep-Sky Image Registration[J]. Acta Optica Sinica, 2017, 37(4): 0410003

周海洋,朱鑫炎,余飞鸿. 改进型高效三角形相似法及其在深空图像配准中的应用[J]. 光学学报, 2017, 37(4): 0410003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF