首页 > 论文 > 光学学报 > 37卷 > 4期(pp:411003--1)

基于Split-Bregman算法的能谱计算机层析图像重建

Spectral Computed Tomographic Image Reconstruction Based on Split-Bregman Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

与传统计算机层析(CT)成像技术相比,能谱CT可在一次扫描中得到物体在不同能谱通道下的投影图像,这有利于区分物体的材质,提高信号噪声比。基于光子计数探测器的能谱CT是近年来成像领域研究的热点。由于能谱通道变窄,每个能谱通道内的噪声增加。为了有效降低通道内的噪声,采用基于全变分最小化的Split-Bregman算法进行图像重建。根据重建模体的先验信息,进行能谱通道的划分;采用Split-Bregman算法对含噪声和稀疏角的能谱投影数据进行重建。仿真结果表明,基于Split-Bregman算法的能谱CT图像重建方法能够有效减少能谱通道内噪声的影响,满足物体材质区分的需求。

Abstract

Compared with the traditional computed tomography (CT), the spectral CT can obtain projection images of the object in different energy spectrum channels with a single scan, which is helpful to improve the contrast-to-noise ratio and distinguish the materials. Spectral CT based on photon counting detector is a hot research topic in recent years. As the energy spectrum channel narrows, the noise increases in each energy spectrum channel. In order to reduce the noise in the channels effectively, the Split-Bregman algorithm based on the total variation minimization is used for spectral CT image reconstruction. The spectral range is divided into different channels according to the prior information of the reconstructed model. The reconstructions are conducted for the projection data with noise and sparse angle based on the Split-Bregman algorithm. The simulation results show that the spectral CT image reconstruction based on the Split-Bregman algorithm can reduce the influence of the noise in spectral channels effectively, and satisfying the requirement of substance distinguishing.

投稿润色
补充资料

中图分类号:O434.1

DOI:10.3788/aos201737.0411003

所属栏目:成像系统

基金项目:国家自然科学基金(61601412,61571404,61471325)、山西省自然科学基金(2015021099)、山西省高等学校优秀青年学术带头人支持计划

收稿日期:2016-11-30

修改稿日期:2017-01-04

网络出版日期:--

作者单位    点击查看

张煜林:中北大学理学院, 山西 太原 030051中北大学信息探测与处理山西省重点实验室, 山西 太原 030051
孔慧华:中北大学理学院, 山西 太原 030051中北大学信息探测与处理山西省重点实验室, 山西 太原 030051
潘晋孝:中北大学理学院, 山西 太原 030051中北大学信息探测与处理山西省重点实验室, 山西 太原 030051
韩焱:中北大学信息探测与处理山西省重点实验室, 山西 太原 030051中北大学电子测试技术国家重点实验室, 山西 太原 030051

联系人作者:张煜林(yulin824@yeah.net)

备注:张煜林(1990-),女,硕士研究生,主要从事图像处理、信息反演与算法方面的研究。

【1】Jakubek J. Semiconductor pixel detectors and their applications in life sciences[J]. Journal of Instrumentation, 2009, 4(3): P03013.

【2】Ballabriga R, Campbell M, Heijne E, et al. Medipix3: a 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance[J]. Nuclear Instruments and Methods in Physics Research A, 2011, 633(s1): S15-S18.

【3】Ballabriga R, Campbell M, Heijne E, et al. The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance[J]. IEEE Transactions on Nuclear Science, 2007, 54(5): 1824-1829.

【4】Narayanasamy G, Feddock J, Gleason J, et al. CBCT-based dosimetric verification and alternate planning techniques to reduce the normal tissue dose in SBRT of lung patients[J]. International Journal of Cancer Therapy and Oncology, 2015, 3(2): 3218-227.

【5】Eshak M, Brooks S, Abdel-Wahed N, et al. Cone beam CT evaluation of the presence of anatomic accessory canals in the jaws[J]. Dentomaxillofacial Radiology, 2014, 43(4): 20130259.

【6】He P, Wei B, Feng P, et al. Material discrimination based on K-edge characteristics[J]. Computational and Mathematical Methods in Medicine, 2013, 2013(3): 308520.

【7】Nik S J, Meyer J, Watts R. Optimal material discrimination using spectral X-ray imaging[J]. Physics in Medicine and Biology, 2011, 56(18): 5969-5983.

【8】de Vries A, Roessl E, Kneepkens E, et al. Quantitative spectral K-edge imaging in preclinical photon-counting X-ray computed tomography[J]. Investigative Radiology, 2015, 50(4): 297-304.

【9】Schmidt T G, Zimmerman K C, Sidky E Y. The effects of extending the spectral information acquired by a photon-counting detector for spectral CT[J]. Physics in Medicine and Biology, 2015, 60(4): 1583-1600.

【10】Silkwood J D, Matthews K L, Shikhaliev P M. Photon counting spectral breast CT: effect of adaptive filtration on CT numbers, noise, and contrast to noise ratio[J]. Medical Physics, 2013, 40(5): 051905.

【11】Li L, Chen Z Q, Cong W X, et al. Spectral CT modeling and reconstruction with hybrid detectors in dynamic-threshold-based counting and integrating modes[J]. IEEE Transactions on Medical Imaging, 2015, 34(3): 716-728.

【12】Hsieh S S, Pelc N J. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors[J]. IEEE Transactions on Medical Imaging, 2015, 34(3): 729-739.

【13】Kim K, Ye J C, Worstell W, et al. Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty[J]. IEEE Transactions on Medical Imaging, 2015, 34(3): 748-760.

【14】Schirra C O, Brendel B, Anastasio M A, et al. Spectral CT: a technology primer for contrast agent development[J]. Contrast Media and Molecular Imaging, 2014, 9(1): 62-70.

【15】Rakvongthai Y, Worstell W, Fakhri G E, et al. Spectral CT using multiple balanced K-edge filters[J]. IEEE Transactions on Medical Imaging, 2015, 34(3): 740-747.

【16】Wu Weiwen, Quan Chao, Liu Fenglin. Filtered back-projection image reconstruction algorithm for opposite parallel linear CT scanning[J]. Acta Optica Sinica, 2016, 36(9): 0911009.
伍伟文, 全 超, 刘丰林. 相对平行直线扫描CT滤波反投影图像重建[J]. 光学学报, 2016, 36(9): 0911009.

【17】Sidky E Y, Kao C M, Pan X C. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-Ray Science and Technology, 2009, 14(2): 119-139.

【18】Semerci O, Hao N, Kilmer M E, et al. Tensor-based formulation and nuclear norm regularization for multienergy computed tomography[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1678-1693.

【19】Xu Q, Yu H Y, Bennett J, et al. Image reconstruction for hybrid true-color micro-CT[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(6): 1711-1719.

【20】Kong H H, Liu R, Yu H Y. Ordered-subset Split-Bregman algorithm for interior tomography[J]. Journal of X-Ray Science and Technology, 2016, 24(2): 221-240.

【21】Gonzales B, Lalush D. Full-spectrum CT reconstruction using a weighted least squares algorithm with an energy-axis penalty[J]. IEEE Transactions on Medical Imaging, 2011, 30(2): 173-183.

【22】Bornefalk H, Danielsson M. Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study[J]. Physics in Medicine and Biology, 2010, 55(7): 1999-2022.

【23】Yu H Y, Xu Q, He P, et al. Medipix-based spectral micro-CT[J]. Computerized Tomography Theory and Applications, 2012, 12(4): 583-596.

【24】Wang G, Jiang M. Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART)[J]. Journal of X-Ray Science and Technology, 2003, 12(3): 169-177.

【25】Nocedal J, Wright S J. Numerical optimization: line search methods[M]. Berlin: Springer, 2006.

引用该论文

Zhang Yulin,Kong Huihua,Pan Jinxiao,Han Yan. Spectral Computed Tomographic Image Reconstruction Based on Split-Bregman Algorithm[J]. Acta Optica Sinica, 2017, 37(4): 0411003

张煜林,孔慧华,潘晋孝,韩焱. 基于Split-Bregman算法的能谱计算机层析图像重建[J]. 光学学报, 2017, 37(4): 0411003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF