首页 > 论文 > 光学学报 > 37卷 > 4期(pp:424002--1)

泡沫镍孔隙尺度光谱辐射特性的实验与数值研究

Experimental and Numerical Study on Pore-Scale Spectral Radiative Properties of Ni Foam

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实验测量了不同厚度的泡沫镍在0.4~2.2 μm波长的法向-半球反射率/透射率,采用蒙特卡罗法对泡沫镍的计算机断层扫描结构进行孔隙尺度辐射传输建模,对比研究了泡沫镍辐射特性随入射光谱和样品厚度的变化,计算得到了泡沫镍辐射特性的孔隙尺度分布特征。结果表明:所建立的泡沫镍孔隙尺度辐射传输模型在计算其光谱辐射特性方面具有正确性。波长增长,吸收率逐渐降低,反射率逐渐升高;样品厚度增加,吸收率逐渐升高并趋于稳定,透射率逐渐降低至0。孔隙尺度辐射特性分布强烈依赖于局部纹理结构,波长1.5 μm时,泡沫孔隙中的平均吸收率是肋筋上的1.5倍,而肋筋上的平均反射率则达到孔隙中平均反射率的3.7倍。

Abstract

The experiment involves normal-hemisphere reflectance/transmittance from foam slices with different thickness at incident wavelength of 0.4-2.2 μm. The pore-scale radiative transfer simulation is modeled with Monte Carlo method applied in foam reconstruction from computed tomography. The radiative properties of Ni foam obtained from experiment and simulation are compared and the pore-scale distributions of radiative properties are analyzed. The results show that the pore-scale radiative transfer model is valid to simulate the radiative properties of Ni foam. The absorptance decreases and reflectance increases as the incident wavelength becomes longer. With samples thick enough, the absorptance increases to a stable value, while the transmittance decreases to zero. In addition, the pore-scale distributions of radiative properties are strongly dependent on the local structure. With incident wavelength of 1.5 μm, the absorptance in void pores is 1.5 times of that on solid skeletons. However, the reflectance on solid skeletons is 3.7 times of that in void pores.

投稿润色
补充资料

中图分类号:TK124

DOI:10.3788/aos201737.0424002

所属栏目:表面光学

基金项目:国家自然科学基金重点项目(51536001)、基础科研项目(B2320132001)

收稿日期:2016-12-07

修改稿日期:2017-01-03

网络出版日期:--

作者单位    点击查看

李洋:哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001
夏新林:哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001
孙创:哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001
范超:哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001
谈和平:哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001

联系人作者:李洋(upcliyang@163.com)

备注:李洋(1991-),男,博士研究生,主要从事泡沫材料多光谱辐射特性与多尺度耦合传输方面的研究。

【1】Wang F Q, Guan Z N, Tan J Y, et al. Transient thermal performance response characteristics of porous-medium receiver heated by multi-dish concentrator[J]. International Communications in Heat and Mass Transfer, 2016, 75: 36-41.

【2】Huang Y, Chao C Y H, Cheng P. Effects of preheating and operation conditions on combustion in a porous medium[J]. International Journal of Heat and Mass Transfer, 2002, 45(21): 4315-4324.

【3】Fan Xuji. On the radiative heat transfer in the porous medium[J]. Spacecraft Engineering, 2011, 20(1): 8-13.
范绪箕. 多孔介质隔热材料中的辐射热传递分析[J]. 航天器工程, 2011, 20(1): 8-13.

【4】Bedarev I A, Mironov S G, Serdyuk K M, et al. Physical and mathematical modeling of a supersonic flow around a cylinder with a porous insert[J]. Journal of Applied Mechanics and Technical Physics, 2011, 52(1): 9-17.

【5】Coquard R, Rousseau B, Echegut P, et al. Investigations of the radiative properties of Al-NiP foams using tomographic images and stereoscopic micrographs[J]. International Journal of Heat and Mass Transfer, 2012, 55(5-6): 1606-1619.

【6】Zhao C Y, Lu T J, Hodson H P. Thermal radiation in ultralight metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2004, 47(14): 2927-2939.

【7】Xu Zhiguo, Wang Meiqin, Zhao Changying. Morphology effect on radiation performance of open-cell metal foams[J]. Journal of Thermal Science and Technology, 2015, 14(4): 267-271.
徐治国, 王美琴, 赵长颖. 形貌对通孔金属泡沫辐射性能的影响[J]. 热科学与技术, 2015, 14(4): 267-271.

【8】Dietrich B, Fischedick T, Heissler S, et al. Optical parameters for characterization of thermal radiation in ceramic sponges: Experimental results and correlation[J]. International Journal of Heat and Mass Transfer, 2014, 79: 655-665.

【9】Sacadura J F, Baillis D. Experimental characterization of thermal radiation properties of dispersed media[J]. International Journal of Thermal Sciences, 2002, 41(7): 699-707.

【10】Cui F Q, He Y L, Cheng Z D, et al. Numerical simulations of the solar transmission process for a pressurized volumetric receiver[J]. Energy, 2012, 46(1): 618-628.

【11】Zmywaczyk J, Koniorczyk P. Numerical solution of inverse radiative-conductive transient heat transfer problem in a grey participating medium[J]. International Journal of Thermophysics, 2009, 30(4): 1438-1451.

【12】Das R, Mishra S C, Uppaluri R. Retrieval of thermal properties in a transient conduction-radiation problem with variable thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2009, 52(11): 2749-2758.

【13】Petrasch J, Haussener S, Lipinski W. Discrete vs. continuum-scale simulation of radiative transfer in semitransparent two-phase media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112: 1450-1459.

【14】Coquard R, Baillis D, Randrianalisoa J. Homogeneous phase and multi-phase approaches for modeling radiative transfer in foams[J]. International Journal of Thermal Sciences, 2011, 50(9): 1648-1663.

【15】Randrianalisoa J, Baillis D. Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches[J]. Comptes Rendus - Physique, 2014, 15(8-9): 683-695.

【16】Rousseau B, de Sousa Meneses D, Echegut P, et al. Textural parameters influencing the radiative properties of a semitransparent porous media[J]. International Journal of Thermal Sciences, 2011, 50(2): 178-186.

【17】Huang Xing, Zhang Xiaoxian, Shuai Yong, et al. Spectral radiation property investigation of iron based oxide micro-particles[J]. Journal of Chemical Industry and Engineering, 2011, 66(s1): 308-313.
黄 兴, 张筱娴, 帅 永, 等. 铁基氧化物微颗粒的光谱辐射特性[J]. 化工学报, 2011, 66(s1): 308-313.

【18】Tan Hai, Wang Dadong, Xue Yanling, et al. Parallelization of 3D thinning algorithm for extracting skeleton of micro-CT vasculature[J]. Acta Optica Sinica, 2015, 35(11): 1117003.
谭 海, 王大东, 薛艳玲, 等. 显微CT血管系统三维结构的骨架细化算法并行化设计实现[J]. 光学学报, 2015, 35(11): 1117003.

【19】Mao Lingtao, Chiang Fupen, Yuan Zexun. Three-dimensional displacement measurement in solid using digital volumetric speckle photography based on computer tomography[J]. Acta Optica Sinica, 2015, 35(3): 0312001.
毛灵涛, Chiang Fupen, 袁则循. 基于CT的数字体散斑法测量物体内部三维变形场[J]. 光学学报, 2015, 35(3): 0312001.

【20】Li Yang, Xia Xinlin, Chen Xue, et al. Simulation study on accelerated pore-scale radiative transfer of Ni foam[J]. Acta Optica Sinica, 2016, 36(11): 1124001.
李 洋, 夏新林, 陈 学, 等. 泡沫镍孔尺度辐射传递加速模拟研究[J]. 光学学报, 2016, 36(11): 1124001.

【21】Coquard R, Rochais D, Baillis D. Modeling of the coupled conductive and radiative heat transfer in NiCrAl from photothermal measurements and X-ray tomography[J]. Special Topics and Reviews in Porous Media, 2011, 2(4): 249-265.

【22】Tan Heping, Xia Xinlin, Liu Linhua, et al. Numerical calculation of infrared radiative transfer[M]. Harbin: Press of Harbin Institute of Technology, 2006: 157-163.
谈和平, 夏新林, 刘林华, 等. 红外辐射传输的数值计算[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 157-163.

【23】Siegel R, Howell J R. Thermal radiation heat transfer[M]. New York: Taylor and Francis, 2002.

【24】克利克苏诺夫. 红外技术原理手册[M]. 俞福堂, 译. 北京: 国防工业出版社, 1986.

【25】Suter S, Steinfeld A, Haussener S. Pore-level engineering of macroporous media for increased performance of solar-driven thermochemical fuel processing[J]. International Journal of Heat and Mass Transfer, 2014, 78: 688-698.

【26】Randrianalisoa J, Baillis D. Radiative transfer in dispersed media: Comparison between homogeneous phase and multiphase approaches[J]. Journal of Heat Transfer, 2010, 132(2): 023405.

引用该论文

Li Yang,Xia Xinlin,Sun Chuang,Fan Chao,Tan Heping. Experimental and Numerical Study on Pore-Scale Spectral Radiative Properties of Ni Foam[J]. Acta Optica Sinica, 2017, 37(4): 0424002

李洋,夏新林,孙创,范超,谈和平. 泡沫镍孔隙尺度光谱辐射特性的实验与数值研究[J]. 光学学报, 2017, 37(4): 0424002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF