首页 > 论文 > 光学学报 > 37卷 > 4期(pp:412004--1)

基于均值似然估计的激光探测微动特征提取和分离

Extraction and Separation of Micro-Motion Feature Based on Mean Likelihood Estimation in Laser Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

最大似然估计是提取目标微动特征参数的最佳估计方法,但直接用网格法求解计算量巨大,且激光探测微多普勒回波信号对应的代价函数具有高度非线性,存在多个局部最大值。为此,提出均值似然估计与蒙特卡罗结合的估计方法,给出了最大似然参数估计的闭合表达式,再通过设计压缩似然函数获得全局最大值,通过蒙特卡罗法抽样并计算循环均值估计出参数。该方法避免了传统方法中对高精度初始值和复杂迭代算法的依赖,能够实现参数的联合估计。对于多分量微多普勒信号,该方法可在参数估计的同时实现各微动分量分离,且不增加算法的复杂性。对仿真和实验数据进行估计,结果表明,该方法在达到近似于最大似然估计性能的同时可有效降低计算复杂度并确保了全局收敛,实现信号的分离和参数估计。

Abstract

Maximum likelihood estimation (MLE) is the optimal estimator for target micro-motion feature parameter extracting. However, the grid search will cause the enormous computational amount, and the cost function of laser detection of micro-Doppler echo signals has high nonlinearity and exists many local maxima. A new method combining the mean likelihood estimation and the Monte Carlo method is proposed to solve this problem. A closed-form expression of maximum likelihood parameter estimation is derived. Then the compressed likelihood function is designed to obtain the global maximum. The parameters are estimated by Monte Carlo method sampling and calculating the circular mean value. The dependence of hight accurate initial values and the complex iteration algorithms are avoided in this method, and the joint estimation of parameters can be realized. Furthermore, for multi-component micro-Doppler signal, the presented algorithm can separate the micro-motion component signals at the same time with the estimations, which will not add complexity of algorithm. Applied to the simulated and experimental data, the proposed method achieves similar performance as MLE with less computational complexity. Meanwhile, this method guarantees the global convergence and realizes signals separation and parameters estimation.

投稿润色
补充资料

中图分类号:TN95

DOI:10.3788/aos201737.0412004

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(61271353)、安徽省自然科学基金(1308085QF123)

收稿日期:2016-12-07

修改稿日期:2016-12-28

网络出版日期:--

作者单位    点击查看

郭力仁:解放军电子工程学院脉冲功率激光技术国家重点实验室,电子制约技术安徽省重点实验室, 安徽 合肥 230037
胡以华:解放军电子工程学院脉冲功率激光技术国家重点实验室,电子制约技术安徽省重点实验室, 安徽 合肥 230037
王云鹏:解放军电子工程学院脉冲功率激光技术国家重点实验室,电子制约技术安徽省重点实验室, 安徽 合肥 230037

联系人作者:郭力仁(guolirenone@163.com)

备注:郭力仁(1990-),男,硕士研究生,主要从事激光探测方面的研究。

【1】Chen V C. Micro-Doppler effect of micromotion dynamics: a review[C]. SPIE, 2003, 5102: 240-249.

【2】Jiang Yue. Research on time-frequency feature extraction of planes based on micro-Doppler effect[D]. Xi’an: Xidian University, 2014.
姜 悦. 基于微多普勒的飞机目标时频域特征提取方法研究[D]. 西安: 西安电子科技大学, 2014.

【3】Yang J, Liu C, Wang Y. Detection and imaging of ground moving targets with real SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 920-932.

【4】Zhang Haiyang, Zhao Changming, Jiang Qijun, et al. Laser detection on micro-Doppler effect in coherent ladar[J]. Chinese J Lasers, 2008, 35(12): 1981-1985.
张海洋, 赵长明, 蒋奇君, 等. 基于相干激光雷达的激光微多普勒探测[J]. 中国激光, 2008, 35(12): 1981-1985.

【5】Guo Liren, Hu Yihua, Li Zheng, et al. Research on influence of acousto-optic frequency shifter to micro-Doppler effect detection[J]. Acta Optica Sinica, 2015, 35(2): 0212006.
郭力仁, 胡以华, 李 政, 等. 声光移频器对微多普勒效应探测的影响研究[J]. 光学学报, 2015, 35(2): 0212006.

【6】Ye Zhongfu. Statistical signal processing[M]. Hefei: University of Science and Technology of China Press, 2009.
叶中付. 统计信号处理[M]. 合肥: 中国科学技术大学出版社, 2009.

【7】Guo Xianbin, Guo Pan, Zhang Yinchao, et al. Performance analysis of maximum likelihood spectral estimator compared with PM estimator[J]. Chinese J Lasers, 2016, 43(3): 0314001.
郭贤斌, 郭 磐, 张寅超, 等. 最大似然频谱估计法与周期图最大值法的性能比较分析[J]. 中国激光, 2016, 43(3): 0314001.

【8】Huo Kai, You Peng, Jiang Weidong, et al. Parameters estimation of signals with sinusoid modulated phase based on cyclostationary character[J]. Journal of Electronics & Information Technology, 2010, 32(2): 355-359.
霍 凯, 游 鹏, 姜卫东, 等. 基于循环平稳特征的正弦调制相位信号参数估计[J]. 电子与信息学报, 2010, 32(2): 355-359.

【9】Zhao Zihui, Li Ming, Zuo Lei, et al. Micro-Doppler parameter estimation of scanning beam radar targets based on a fractional period[J]. Systems Engineering and Electronics, 2015, 37(11): 2497-2502.
赵紫蕙, 李 明, 左 磊, 等. 基于部分周期的扫描雷达目标微多普勒参数估计[J]. 系统工程与电子技术, 2015, 37(11): 2497-2502.

【10】Xiao Jinguo, Du Lan, Han Xun, et al. Micro-Doppler frequency extraction for cone-skirt shaped target with precession based on parameterized time-frequency analysis[J]. Journal of Electronics & Information Technology, 2016, 38(1): 90-96.
肖金国, 杜 兰, 韩 勋, 等. 基于参数化时频分析的进动锥裙目标瞬时微多普勒频率提取方法[J]. 电子与信息学报, 2016, 38(1): 90-96.

【11】Zhang Wanjun, Niu Minjie, Yang Yuying, et al. Analysis of micro-Doppler effect of armored vehicle based on adaptive optimal kernel time-frequency distribution[J]. Fire Control & Command Control, 2015, 40(6): 14-17.
张万君, 牛敏杰, 杨雨迎, 等. 基于最优核时频分布的装甲车辆微多普勒特征分析[J]. 火力与指挥控制, 2015, 40(6): 14-17.

【12】Qin Xiaodong, Zhang Shiyuan, Yu Rongmei. Analysis of micro-Doppler time-frequency for ballistic targets based on time slicing data[J]. Journal of Air Force Radar Academy, 2015, 29(4): 255-257.
秦晓东, 张仕元, 喻荣梅. 基于时间分段数据的弹道目标微多普勒时频分析方法[J]. 空军预警学院学报, 2015, 29(4): 255-257.

【13】Li Kangle. Feature extracting and estimating technology for micro-Doppler effect in radar[D]. Changsha: National University of Defense Technology, 2010.
李康乐. 雷达目标微动特征提取与估计技术研究[D]. 长沙: 国防科学技术大学, 2010.

【14】Setlur P, Amin M, Ahmad F. Optimal and suboptimal micro-Doppler estimation schemes using carrier diverse Doppler radars[C]. Taipei: IEEE International Conferenceon Acoustics, Speech and Signal Processing, 2009: 3265-3268.

【15】Setlur P, Ahmad F, Amin M. Maximum likelihood and suboptimal schemes for micro-Doppler estimation using carrier diverse Doppler radars[J]. IET Signal Processing, 2011, 5(2): 194-208.

【16】Kay S M, Saha S. Mean likelihood frequency estimation[J]. IEEE Trans on Signal Processing, 2000, 48(7): 1937-1946.

【17】Saha S, Kay S M. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 224-230.

【18】Feil B, Kucherenko S, Shah N. Comparison of Monte Carlo and quasi Monte Carlo sampling methods in high dimensional model representation[C]. International Conference on Advances in System Simulation, 2009: 12-17.

【19】Ba Bin, Zheng Na’e, Zhu Shilei, et al. A maximum likelihood time delay estimation algorithm using Monte Carlo method[J]. Journal of Xi′an JiaoTong University, 2015, 49(8): 24-30.
巴 斌, 郑娜娥, 朱世磊, 等. 利用蒙特卡罗的最大似然时延估计算法[J]. 西安交通大学学报, 2015, 49(8): 24-30.

【20】Chen V. The micro-Doppler effect in radar[M]. Boston: Artech House, 2011.

【21】Kay S M. Fundamentals of statistical signal processing: estimation theory[M]. New Jersey: Prentice Hall, 2006.

【22】Li Po. Research on micro-Doppler signal separation and parameter estimation of radar target[D]. Nanjing: Nanjing University of Science and Technology, 2012.
李 坡. 雷达目标微动信号分离与参数估计方法研究[D]. 南京: 南京理工大学, 2012.

引用该论文

Guo Liren,Hu Yihua,Wang Yunpeng. Extraction and Separation of Micro-Motion Feature Based on Mean Likelihood Estimation in Laser Detection[J]. Acta Optica Sinica, 2017, 37(4): 0412004

郭力仁,胡以华,王云鹏. 基于均值似然估计的激光探测微动特征提取和分离[J]. 光学学报, 2017, 37(4): 0412004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF