首页 > 论文 > 光学学报 > 37卷 > 4期(pp:428002--1)

基于偏移阴影分析的高分辨率可见光影像建筑物自动提取

Automatic Building Extraction from High Resolution Visible Images Based on Shifted Shadow Analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高建筑物提取的自动化程度和精度,提出了一种以分割-分类-优化为主线、利用偏移阴影分析的建筑物全自动提取方法。首先,采用面向对象的多尺度分割方法进行影像初分割;然后,结合支持向量机(SVM)分类,将分割结果分为阴影、植被、建筑物、裸地四大类并提取初始结果;最后,利用相交边界阴影比率准确地验证了建筑物的存在,剔除了无阴影的非建筑物干扰,获取了最终结果。大量的实验结果验证了该方法的有效性,自动化程度得到明显提高。该方法完整度达到85%以上,正确率和综合分数F1均达到90%以上,且仅需要可见光波段影像数据,适用范围广。

Abstract

In order to improve the automation level and the precision of building extraction, an automatic building extraction method based on shifted shadow analysis is proposed. It is guided by the principal line of segmentation-classification-optimization. The object oriented multi-resolution segmentation method is adopted to perform the initial image segmentation. The segmentation results are classified by the support vector machine (SVM) classifier into four categories, i.e., shadow, vegetation, building and bare land. The initial results are extracted. The shadow rate on the intersection boundary is designed to accurately validate the existence of buildings and remove the disruptions of non-buildings without shadows, and the final results are obtained. The large amount of experimental results validate that the proposed method is very effective, and the automation level is significantly improved. The completeness is more than 85%. The correctness and the F1-score can both reach more than 90%.The proposed method only needs data from images in the visible band and has a wide application range.

投稿润色
补充资料

中图分类号:TP753

DOI:10.3788/aos201737.0428002

所属栏目:遥感与传感器

基金项目:国家自然科学基金(41671450,41371343)、地理国情监测国家测绘地理信息局重点实验室开放基金(2016NGCM07)

收稿日期:2016-12-14

修改稿日期:2016-12-27

网络出版日期:--

作者单位    点击查看

高贤君:长江大学地球科学学院, 湖北 武汉 430100
郑学东:长江水利委员会长江科学院, 湖北 武汉 430010
刘子潇:天津市测绘院, 天津 300381
杨元维:长江大学地球科学学院, 湖北 武汉 430100

联系人作者:高贤君(junxgao@whu.edu.cn)

备注:高贤君(1986-),女,博士,讲师,主要从事高分辨率遥感影像智能解译方面的研究。

【1】Ferro A, Brunner D, Bruzzone L. Automatic detection and reconstruction of building radar footprints from single VHR SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 935-952.

【2】Zhang Zhichao. Airborne and terrestrial LIDAR data fusion for 3D building reconstruction[D]. Wuhan: Wuhan University, 2010.
张志超. 融合机载与地面LIDAR数据的建筑物三维重建研究[D]. 武汉: 武汉大学, 2010.

【3】Yan J H, Zhang K Q, Zhang C C, et al. Automatic construction of 3-D building model from airborne LIDAR data through 2-D snake algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 3-14.

【4】Rother C, Kolmogorov V, Blake A. "GrabCut"-Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.

【5】Sirmacek B, Uensalan C. Urban-area and building detection using SIFT keypoints and graph theory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1156-1167.

【6】Mayunga S, Zhang Y, Coleman D J. Semi-automatic building extraction utilizing Quickbird imagery[C]. Proceedings of the ISPRS Workshop CMRT, 2005: 131-136.

【7】Ruther H, Martine H M, Mtalo E G. Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2002, 56(4): 269-282.

【8】Ding Weili, Wang Wenfeng, Zhang Xuguang, et al. Extractin straight lines from building image based on edge orientation image[J]. Acta Optica Sinica, 2010, 30(10): 2904-2910.
丁伟利, 王文锋, 张旭光, 等. 基于边缘方向图的建筑物直线特征提取[J]. 光学学报, 2010, 30(10): 2904-2910.

【9】Turker M, Koc-San D. Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34(5): 58-69.

【10】Cheng Xiaojun, Cheng Xiaolong, Hu Minjie, et al. Building detection and contour extraction by fusion of aerial images and LIDAR point cloud[J]. Chinese J Lasers, 2016, 43(5): 0514002.
程效军, 程小龙, 胡敏捷, 等. 融合航空影像和LIDAR点云的建筑物探测及轮廓提取[J]. 中国激光, 2016, 43(5): 0514002.

【11】Ghanea M, Moallem P, Momeni M. Automatic building extraction in dense urban areas through GeoEye multispectral imagery[J]. International Journal of Remote Sensing, 2014, 35(13): 5094-5119.

【12】Wu Wei, Luo Jiancheng, Shen Zhanfeng, et al. Buildinig extraction from high resolution remote sensing imagery based on spatial-spectral method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 800-805.
吴 炜, 骆剑承, 沈占锋, 等. 光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J]. 武汉大学学报(信息科学版), 2012, 37(7): 800-805.

【13】Liu Dawei, Han Ling, Han Xiaoyong. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.
刘大伟, 韩 玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

【14】Ghaffarian S, Ghaffarian S. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 152-159.

【15】Müller S, Zaum D W. Robust building detection in aerial images[C]. Proceedings of the ISPRS Workshop CMRT, 2005: 143-148.

【16】Sumer E, Turker M. An adaptive fuzzy-genetic algorithm approach for building detection using high-resolution satellite images[J]. Computers Environment and Urban Systems, 2013, 39: 48-62.

【17】Liu Jing, Li Peijun. A high resolution image segmentation method by combined structural and spectrual characteristics[J]. Acta Geodaetica et Cartograhica Sinca, 2014, 43(5): 466-473.
刘 婧, 李培军. 结合结构和光谱特征的高分辨率影像分割方法[J]. 测绘学报, 2014, 43(5): 466-473.

【18】Gao Xianjun, Wan Youchuan, Yang Yuanwei, et al. Automatic shadow detection and automatic compensation in high resolution remote sensing images[J]. Acta Automatica Sinica, 2014, 40(8): 1709-1720.
高贤君, 万幼川, 杨元维, 等. 高分辨率遥感影像阴影的自动检测与自动补偿[J]. 自动化学报, 2014, 40(8): 1709-1720.

【19】Huang Xin. Multiscale texture and shape feature extraction and object-oriented classification for very high resolution remotely sensed imagery[D]. Wuhan: Wuhan University, 2009.
黄 昕. 高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉: 武汉大学, 2009.

【20】Dahiya S, Garg P, Jat M K. Object oriented approach for building extraction from high resolution satellite images[C]. IEEE 3rd International Advance Computing Conference, 2013: 1300-1305.

【21】Ok A O, Senaras C, Yuksel B. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1701-1717.

引用该论文

Gao Xianjun,Zheng Xuedong,Liu Zixiao,Yang Yuanwei. Automatic Building Extraction from High Resolution Visible Images Based on Shifted Shadow Analysis[J]. Acta Optica Sinica, 2017, 37(4): 0428002

高贤君,郑学东,刘子潇,杨元维. 基于偏移阴影分析的高分辨率可见光影像建筑物自动提取[J]. 光学学报, 2017, 37(4): 0428002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF