首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:42401--1)

表面等离子体激元耦合到自由空间中光束的研究

Coupling Surface Plasmon Polaritons into Beams in Free Space

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在光学集成中,金属表面的等离子体传输控制非常重要。应用表面波全息法设计结构控制表面等离子体波耦合到自由空间中的光波。模拟金属表面等离子波束与自由空间中目标光束的标量叠加,得到干涉光强。在光强极大值的地方刻蚀凹槽,获得凹槽结构。当表面等离子波入射到设计的结构中,凹槽散射等离子体波并在自由空间中进行叠加,得到所需的光束。利用此原理,在金属表面设计了两个结构,将传输的等离子体波耦合到自由空间中,汇聚于指定的一点或者两点。利用时域有限差分法模拟验证了此原理的可行性。这种耦合方式可以作为解决表面等离子体集成光路中探测问题的一种方案,将传输的表面等离子体信号耦合到自由空间,然后利用传统光电探测设备探测。

Abstract

Transmission control of the plasma on the metal surface in optical integration is very important. Structures are designed to couple the surface plasmon polaritons (SPPs) to the light wave in free space by surface wave holography. Interference light intensity is obtained through simulating the scalar superposition of the SPP wave beam and the target beam in free space. Groove structures are obtained by etching grooves at the maximum light intensity positions. When the SPP waves are incident to the designed structures, the grooves scatter the SPP waves into free space and then the waves superpose there, generating the required light beam. Based on the principle, two structures are designed for coupling the SPP waves to focus on one or two specified points in free space. The finite-difference time-domain method is used to verify the principle. This coupled manner can be used as a method for solving the detection problem in the surface plasmon integrated optics. The SPP signal is coupled into free space and detected by common photodetectors.

投稿润色
补充资料

中图分类号:O436.1

DOI:10.3788/lop54.042401

所属栏目:表面光学

基金项目:贵州省科技合作计划(黔科合LH字[2015]7642)

收稿日期:2016-10-08

修改稿日期:2016-12-08

网络出版日期:--

作者单位    点击查看

尹娟:贵州大学物理学院, 贵州 贵阳 550025
陈跃刚:贵州大学物理学院, 贵州 贵阳 550025

联系人作者:尹娟(yj_yjuan@sina.com)

备注:尹娟(1989-),女,硕士研究生,主要从事表面等离子体方面的研究。

【1】Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

【2】Ng M Y, Liu W C. Local-field confinement in three-pair arrays of metallic nanocylinders[J]. Optics Express, 2006, 14(10): 4504-4513.

【3】Pellegrini G, Bello V, Mattei G, et al. Local-field enhancement and plasmon tuning in bimetallic nanoplanets[J]. Optics Express, 2007, 15(16): 10097-10102.

【4】Rümke T M, Sánchez-Gil J A, Muskens O L, et al. Local and anisotropic excitation of surface plasmon polaritons by semiconductor nanowires[J]. Optics Express, 2008, 16(7): 5013-5021.

【5】Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides[J]. Optics Express, 2005, 13(1): 256-266.

【6】Hibbins A P, Hendry E, Lockyer M J, et al. Prism coupling to "designer" surface plasmons[J]. Optics Express, 2008, 16(25): 20441-20447.

【7】van Exter M P, Tenner V T, van Beijnum F, et al. Surface plasmon dispersion in metal hole array lasers[J]. Optics Express, 2013, 21(22): 27422-27437.

【8】Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

【9】Barnes W L, Murray W A, Dintinger J, et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film[J]. Physical Review Letters, 2004, 92(10): 107401.

【10】Brolo A G, Gordon R, Leathem B, et al. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films[J]. Langmuir, 2004, 20(12): 4813-4815.

【11】Dhawan A, Canva M, Vo-Dinh T. Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing[J]. Optics Express, 2011, 19(2): 787-813.

【12】Zhang X D. Extraordinary transmissions on cylinder metallic gratings with very narrow slits[J]. Physics Letters A, 2004, 331(3-4): 252-257.

【13】Chen Quansheng, Tong Yuying, Zhuang Yuan, et al. Unidirectional excitation of surface plasmon based on metallic slit-groove structure[J]. Chinese J Lasers, 2014, 41(5): 0510001.
陈全胜, 佟玉莹, 庄 园, 等. 基于金属狭缝-凹槽结构单向激发表面等离子体[J]. 中国激光, 2014, 41(5): 0510001.

【14】Li J, Gu Y, Gong Q H. Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays[J]. Optics Express, 2010, 18(17): 17684-17698.

【15】Zhang Ming, Lü Jingwei, Liu Zhaoyan, et al. Surface plasmon resonance properties of silver nanosphere arrays[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081601.
张 明, 吕靖薇, 刘昭延, 等. 银纳米球阵列的表面等离子体共振特性[J]. 激光与光电子学进展, 2016, 53(8): 081601.

【16】Li Juan, Wang Bingyan, Xue Wenrui. Propagation properties of Y-splitters based on MIM surface plasmonic waveguides[J]. Acta Optica Sinica, 2012, 32(1): 0124002.
李 娟, 王冰艳, 薛文瑞. 基于MIM型表面等离子体光波导的Y形分束器的传输特性研究[J]. 光学学报, 2012, 32(1): 0124002.

【17】Wang Jicheng, Liu Hongjiao, Cai Zengyan, et al. Design of surface plasmon dichroic splitter with two metallic slits[J]. Laser & Optoelectronics Progress, 2014, 51(10): 102301.
王继成, 刘红娇, 蔡增艳, 等. 双缝波导结构表面等离子体可见光分束器设计[J]. 激光与光电子学进展, 2014, 51(10): 102301.

【18】Liu Hongjiao, Shen Kaijun, Wang Jicheng, et al. Plasmonic dichroic splitter based on multi-slits in MIM structure[J]. Laser & Optoelectronics Progress, 2015, 52(10): 102302.
刘红娇, 沈垲均, 王继成, 等. 多狭缝金属-介质-金属结构等离子体可见光分束器[J]. 激光与光电子学进展, 2015, 52(10): 102302.

【19】Minh T T, Tanaka K, Tanaka M. Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines[J]. Optics Express, 2008, 16(13): 9378-9390.

【20】Li S S, Jadidi M M, Murphy T E, et al. Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves[J]. Optics Express, 2013, 21(6): 7041-7049.

【21】Cakmakyapan S, Serebryannikov A E, Caglayan H, et al. Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating[J]. Optics Express, 2012, 20(24): 26636-26648.

【22】Diedenhofen S L, Kufer D, Lasanta T, et al. Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofoucsing lenses[J]. Light: Science & Applications, 2015, 4(1): e234.

【23】Kim K J, Kim J E, Park H Y, et al. Propagation of spoof surface plasmon on metallic square lattice: bending and splitting of self-collimated beams[J]. Optics Express, 2014, 22(4): 4050-4058.

【24】Kosaka H, Kawashima T, Tomita A, et al. Self-collimating phenomena in photonic crystals[J]. Applied Physics Letters, 1999, 74(9): 1212-1214.

【25】Chen Y H, Huang L, Gan L, et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light: Science & Applications, 2012, 1(8): e26.

【26】Chen Y H, Fu J X, Li Z Y. Surface wave holography on designing subwavelength metallic structures[J]. Optics Express, 2011, 19(24): 23908-23920.

【27】Chen Y G, Wang Y, Li Z Y. Complicated wavefront shaping of surface plasmon polaritons on metal surface by holographic groove patterns[J]. Plasmonics, 2014, 9(5): 1057-1062.

【28】Chen Y G, Chen Y H, Li Z Y. Direct method to control surface plasmon polaritons on metal surface[J]. Optics Letters, 2014, 39(2): 339-342.

【29】Chen Y G, Li Z Y. Free space optical beam coupled to surface plasmonic polariton waves via designed grooves in metal film[J]. Chinese Optics Letters, 2015, 13(2): 020501.

引用该论文

Yin Juan,Chen Yuegang. Coupling Surface Plasmon Polaritons into Beams in Free Space[J]. Laser & Optoelectronics Progress, 2017, 54(4): 042401

尹娟,陈跃刚. 表面等离子体激元耦合到自由空间中光束的研究[J]. 激光与光电子学进展, 2017, 54(4): 042401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF