首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:42301--1)

基于光纤光栅传感系统的光纤法布里-珀罗滤波器热致非线性研究

Investigation on Thermo-Induced Nonlinearity of Fiber Fabry-Perot Filter by Using Optical Fiber Sensing System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究和评估了基于光纤布拉格光栅(FBG)传感系统的压电陶瓷(PZT)驱动的光纤法布里-珀罗(FFP)滤波器的热致非线性,采用多项式拟合法减小FFP滤波器的热致非线性误差。在FFP滤波器所处环境温度变化超过15 ℃的情况下,采用大于等于4阶的多项式拟合和参考光栅的方法,可使FFP滤波器热致应变误差从750 με减小到15 με,标准差保持在10 με以下。实验结果显示,当PZT驱动的FFP滤波器的温度变化范围较大时,其热效应不是简单地保持不变或呈线性。

Abstract

The thermo-induced nonlinearity of piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter using fiber Bragg grating (FBG) sensing system is investigated and evaluated. Polynomial fitting is adopted to model the nonlinearity. Under 4th or higher order polynomial fitting and a reference FBG, the thermo-induced strain error is reduced from 750 με to 15 με and the standard deviation is kept below 10 με while PZT driven FFP experiences over 15 ℃ temperature change. It is observed that thermal effect on PZT driven FFP is not simply invariable or linear in a wide temperature range.

投稿润色
补充资料

中图分类号:TP212

DOI:10.3788/lop54.042301

所属栏目:光学器件

基金项目:国家自然科学基金(61304134)、中国国家留学基金管理委员会(2009102131)、上海市高校青年教师研究基金(61003089)、上海市“创新行动计划”部分地方院校能力建设专项项目(15160500800)、分布式试验检验系统数据处理平台(H2015-159)

收稿日期:2016-10-08

修改稿日期:2016-11-25

网络出版日期:--

作者单位    点击查看

盛文娟:上海电力学院自动化工程学院, 上海 200090新南威尔士大学电气工程与电信学院, 新南威尔士州, 悉尼 2052
张慧:上海电力学院自动化工程学院, 上海 200090
杨宁:上海电力学院自动化工程学院, 上海 200090
刘洋:新南威尔士大学电气工程与电信学院, 新南威尔士州, 悉尼 2052
彭刚定:新南威尔士大学电气工程与电信学院, 新南威尔士州, 悉尼 2052

联系人作者:盛文娟(wenjuansheng@shiep.edu.cn)

备注:盛文娟(1982-),女,博士,讲师,主要从事光纤光栅传感技术、远程监测与控制等方面的研究。

【1】Jang Junfeng, Yan Jinling, Wang Shuang, et al. Study on suppression filter scanning FBG demodulation in environmental temperature[J]. Acta Optica Sinica, 2016, 36(12): 1206001.
江俊峰, 闫金玲, 王 双, 等. 环境变温下FBG解调中滤波器扫描波动抑制研究[J]. 光学学报, 2016, 36(12): 1206001.

【2】Wang Min, Qiao Xueguang, Jia Zhen′an, et al. Research on signal demodulation technology of fiber Bragg grating sensor system[J]. Laser & Optoelectronics Progress, 2004, 41(12): 54-58.
王 敏, 乔学光, 贾振安, 等. 光纤布拉格光栅传感系统信号解调技术研究[J]. 激光与光电子学进展, 2004, 41(12): 54-58.

【3】Yu Youlong, Tan Ling, Li Qian, et al. Influence of thermal effect caused by piezoelectric transducer on interferometric demodulation for fiber Bragg grating sensor[J]. Acta Optica Sinica, 2014, 34(5): 0506005.
余有龙, 谭 玲, 李 茜, 等. 压电陶瓷发热对光纤光栅传感信号干涉解调的影响[J]. 光学学报, 2014, 34(5): 0506005.

【4】Wang Yongjun, Liu Yongchao, Sun Jingtao, et al. Interrogation technology for high-speed and high-resolution fiber Bragg gratings sensing system[J]. Chinese J Lasers, 2013, 40(2): 0205003.
王拥军, 刘永超, 孙靖涛, 等. 高速高分辨率光纤布拉格光栅传感系统的解调技术[J]. 中国激光, 2013, 40(2): 0205003.

【5】Liu K, Liu T, Jiang J, et al. Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection[J]. Journal of Lightwave Technology, 2011, 29(1): 15-21.

【6】Liu K, Jing W C, Peng G D, et al. Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system[J]. Optics Communications, 2008, 281(12): 3286-3290.

【7】Qi H B, Wei S H, Wei C. Design and experimental research of a high-precision wavelength controller for tunable fiber Fabry-Perot filters[J]. Optoelectronics Letters, 2013, 9(2): 101-104.

【8】Ding H, Wu X, Liang J, et al. Online calibration of PZT driven fiber Fabry-Perot filter nonlinearity using FBG array and PSO algorithm[J]. Measurement, 2009, 42(7): 1059-1064.

【9】Kallapur A G, Boyson T K, Petersen I R, et al. Low pass filter model-based offline estimation of ring-down time for an experimental Fabry-Perot optical cavity[C]. IEEE International Conference on Control Applications, 2012: 75-79.

【10】Sheng W J, Liu Yang, Peng G D. An optimized demodulation method for fiber F-P tunable filter based on parallel operation and AC-DC method[J]. Journal of Optoelectronics·Laser, 2014, 25(3): 429-434.
盛文娟, Liu Yang, Peng G D. 基于并行处理和AC-DC修正的可调光滤波器解调技术研究[J]. 光电子·激光, 2014, 25(3): 429-434.

【11】Nicolai M, Uhlig S, Schnecker A, et al. Experimental investigation of non-linear behaviour of PZT piezoceramics at low temperatures[J]. Advances in Science & Technology, 2008, 56: 105-110.

【12】Burianova L, Hana P, Pustka M, et al. Non-linear properties of PZT ceramics in the wide temperature range[J]. Journal of the European Ceramic Society, 2005, 25(12): 2405-2409.

【13】Zhou H M, Cui X L. Static magnetoelectric coupling of magnetoelectric laminated composites under combined temperature and stress loadings[J]. Journal of Applied Physics, 2014, 115(8): 083905.

【14】Charlot B, Coudouel D, Very F, et al. Droplet generation for thermal transient stimulation of pyroelectric PZT element[J]. Sensors & Actuators A Physical, 2015, 225: 103-110.

【15】Wang Peng, Zhao Hong, Liu Jie, et al. Dynamic real time calibration method for FBG wavelength demodulation system based on tunable F-P filter[J]. Acta Optica Sinica, 2015, 35(8): 0806006.
王 鹏, 赵 洪, 刘 杰, 等. 基于可调谐F-P滤波器的FBG波长解调系统的动态实时校准方法[J]. 光学学报, 2015, 35(8): 0806006.

【16】Yin Yu, Yu Zhenhong. Optimization of optical clock recovery performance based on F-P cavity with fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110602.
殷 宇, 余震虹. 光纤光栅对基于F-P腔全光时钟恢复性能的优化[J]. 激光与光电子学进展, 2016, 53(11): 110602.

【17】Sun Shihui, Yu Youlong, Li Hui, et al. Research on stress wave detection technology based on fiber Bragg grating[J]. Chinese J Lasers, 2016, 43(5): 0505002.
孙诗惠, 余有龙, 李 慧, 等. 基于光纤光栅的应力波检测技术研究[J]. 中国激光, 2016, 43(5): 0505002.

引用该论文

Sheng Wenjuan,Zhang Hui,Yang Ning,Liu Yang,Peng Gangding. Investigation on Thermo-Induced Nonlinearity of Fiber Fabry-Perot Filter by Using Optical Fiber Sensing System[J]. Laser & Optoelectronics Progress, 2017, 54(4): 042301

盛文娟,张慧,杨宁,刘洋,彭刚定. 基于光纤光栅传感系统的光纤法布里-珀罗滤波器热致非线性研究[J]. 激光与光电子学进展, 2017, 54(4): 042301

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF