首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:41205--1)

基于双激光标靶图像识别的掘进机位姿检测方法

Method of Roadheader Position Detection Based on Image Recognition of Double Laser Targets

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对煤矿井下巷道掘进机位姿的测量需求,采用双激光标靶的图像识别测量方式,构建了位姿实时检测系统。研究了激光标靶上光学特征点和特征光线的空间分布,提出一种基于双激光标靶的掘进机位姿解算方法。通过对图像数字处理得到精确的特征点、特征光线参数,实现对标靶参考点的精确定位,使用空间矩阵变换方法,解算出掘进机位姿参数。在实验室条件下建立机身位姿自动检测实验平台,模拟环境下的测试结果表明,在测量范围小于40 m时,位移误差小于2 mm,角度误差小于0.5°。该系统测量精度高,结构简单可靠,实时性强,能够很好地满足测量需求,实现对掘进机在煤矿井下掘进过程中的位姿检测。

Abstract

To measure the roadheader position in coal mine, a real-time detection system of roadheader position is constructed, which uses the image recognition measurement method based on double laser targets. The spatial distributions of optical feature points and feature light on the laser target are researched, and the calculation method of roadheader position based on double laser targets is presented. With digital image processing technology, the accurate parameters of feature points and feature light are obtained, thus the precise localization of reference points on target is realized. Then, the space matrix transformation method is used to calculate the roadheader position parameters. In the simulation test, an automatic test platform of body position is established. The experimental results show that when the measurement range is less than 40 m, the system displacement error is less than 2 mm, and the angle error is less than 0.5°. The measure system has such advantages as high accuracy, simple and reliable structure, and good real-time performance. Therefore, it can meet the measurement requirements well, and achieve the position monitoring of roadheader in the tunneling process in the mine.

投稿润色
补充资料

中图分类号:TH741

DOI:10.3788/lop54.041205

所属栏目:仪器,测量与计量

收稿日期:2016-11-08

修改稿日期:2016-12-13

网络出版日期:--

作者单位    点击查看

周玲玲:中国矿业大学信息与电气工程学院, 江苏 徐州 221116
董海波:中国矿业大学信息与电气工程学院, 江苏 徐州 221116
杜雨馨:中国矿业大学信息与电气工程学院, 江苏 徐州 221116

联系人作者:周玲玲(122015274@qq.com)

备注:周玲玲(1992-),女,硕士研究生,主要从事检测技术与自动化装置方面的研究。

【1】Wang Hong. The 40 years developmental review of the fully mechanized mine roadway heading technology in China[J]. Journal of China Coal Society, 2010, 35(11): 1815-1820.
王 虹. 我国综合机械化掘进技术发展40 a[J]. 煤炭学报, 2010, 35(11): 1815-1820.

【2】Li Rui. Research on an automatic detection system for the position and orientation parameters of boom-type road header body[D]. Beijing: China University of Mining and Technology (Beijing), 2012: 41-48.
李 睿. 悬臂悬臂式掘进机机身位姿参数检测系统研究[D]. 北京: 中国矿业大学(北京), 2012: 41-48.

【3】Li Tiening, Li Wanpeng, Xu Wei, et al. Application of space navigation and positioning system in automatic boring machine[J]. Coal Mining Machinery, 2010, 31(8): 33-60.
李铁宁, 李万鹏, 徐 伟, 等. 航天导航定位仪在全自动掘进机上的应用[J]. 煤矿机械, 2010, 31(8): 33-60.

【4】Wu Sen, Zhang Minjun, Jia Wenhao, et al. A body of roadheader cutting head and position detection method: China. CN 104776843 A[P]. 2015-07-15.
吴 森, 张敏骏, 贾文浩, 等. 一种悬臂式掘进机机身与截割头位姿检测方法: 中国. CN 104776843 A[P]. 2015-07-15.

【5】Yang Wenhui, Lin Jiarui, Gao Yang, et al. Double shield hard rock tunnel boring machine position measurement system[J]. Acta Optica Sinica, 2015, 35(11): 1112005.
杨文辉, 林嘉睿, 高 扬, 等. 双护盾硬岩隧道掘进机位姿测量系统[J]. 光学学报, 2015, 35(11): 1112005.

【6】Cai Jia, Huang Panfeng, Zhang Bin. Fast circle detector based on region-growing of gradient and histogram of euclidean distance[J]. Acta Optica Sinica, 2015, 35(3): 0315001.
蔡 佳, 黄攀峰, 张 彬. 基于梯度的区域生长和距离直方图的快速圆检测方法[J]. 光学学报, 2015, 35(3): 0315001.

【7】Xu Hongke, Qin Yanyan, Chen Huiru. An improved edge detection algorithm based on Canny[J]. Infrared Technology, 2014, 36(3): 44-75.
许宏科, 秦严严, 陈会茹. 一种基于改进Canny的边缘检测算法[J]. 红外技术, 2014, 36(3): 44-75.

【8】Wang Hui, Xu Zhuo. Position detection and localization of the tunneling robot[J]. Manufacturing Automation, 2013, 35(3): 57-60.
王 慧, 许 琢. 掘进机器人的位姿检测与机体定位[J]. 制造业自动化, 2013, 35(3): 57-60.

【9】Tian Jie, Wang Suyu, Mu Jing, et al. Spatial pose kinematics model and simulation of boom-type roadheader[J]. Journal of China Coal Society, 2015, 40(11): 2617-2622.
田 劼, 王苏彧, 穆 晶, 等. 悬臂式掘进机空间位姿的运动学模型与仿真[J]. 煤炭学报, 2015, 40(11): 2617-2622.

【10】Dai Yingjie, Wang Wei, Deng Shijie, et al. Position and posture measurement of dynamic target based on stereo machine vision[J]. Journal of Vibration and Shock, 2015, 34(16): 188-212.
歹英杰, 汪 伟, 邓士杰, 等. 基于立体机器视觉的动目标空间位姿测试研究[J]. 振动与冲击, 2015, 34(16): 188-212.

引用该论文

Zhou Lingling,Dong Haibo,Du Yuxin. Method of Roadheader Position Detection Based on Image Recognition of Double Laser Targets[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041205

周玲玲,董海波,杜雨馨. 基于双激光标靶图像识别的掘进机位姿检测方法[J]. 激光与光电子学进展, 2017, 54(4): 041205

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF