首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:40601--1)

基于扫频光源的光纤光栅温度和轴向拉力传感系统

Optical Fiber Grating Temperature and Axial Tension Sensing System Based on Swept Source

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统宽带光源光纤光栅(FBG)传感系统的解调部分比较复杂,为了克服这一缺点,使用线性扫频激光器作为FBG传感系统的光源,并选定一个光栅作为参考光栅,将其他光栅作为传感光栅。根据传感光栅与参考光栅的反射信号时间间隔的变化,解调得到FBG反射中心波长的变化,解调过程非常简便。基于FBG传感系统进行了温度和光纤轴向拉力的测量实验,验证了该系统的可行性和正确性,也证明了该系统可单独或同时测量温度和光纤轴向拉力。给出了提高系统测量精度的途径,包括保证参考光栅的温度稳定以及使用扫频速率较小的扫频光源和采样速率较高的示波器。

Abstract

The demodulation part of a traditional fiber grating sensing system with a broadband light source is complex. In order to overcome this shortcoming, a linear swept laser is used as light source of the FBG sensor system. One of the gratings is used as reference grating, and other gratings are used as sensing gratings. The change of the reflection center wavelength of FBG is obtained according to the change of time interval between reflection signals of the sensing grating and the reference grating. The demodulation process is very simple and straightforward. The FBG sensing system is used to accomplish experiments of temperature measurement and fiber axial tension measurement. The results verify the feasibility and the correctness of the FBG sensing system and also prove that the FBG sensing system can either individually or simultaneously measure temperature and fiber axial tension. Some methods which improve the measurement precision are presented, including keeping the temperature of reference grating stable and using the swept light source with low swept rate and the oscilloscope with high sampling rate.

投稿润色
补充资料

中图分类号:TP212

DOI:10.3788/lop54.040601

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61275075)

收稿日期:2016-11-11

修改稿日期:2016-12-02

网络出版日期:--

作者单位    点击查看

苏红:北京交通大学理学院光信息科学与技术研究所发光与光信息技术教育部重点实验室,北京 100044
王健:北京交通大学理学院光信息科学与技术研究所发光与光信息技术教育部重点实验室,北京 100044
刘岚岚:北京交通大学理学院光信息科学与技术研究所发光与光信息技术教育部重点实验室,北京 100044
吴重庆:北京交通大学理学院光信息科学与技术研究所发光与光信息技术教育部重点实验室,北京 100044

联系人作者:苏红(14121573@bjtu.edu.cn)

备注:苏红(1989-),女,硕士研究生,主要从事光纤通信和光纤光栅传感等方面的研究。

【1】Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.

【2】Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10): 1035-1037.

【3】Morey W W, Meltz G, Glenn W H. Fiber optic Bragg grating sensors[C]. SPIE, 1989, 1169: 98-107.

【4】Huang Yonglin, Tong Zhengrong, Xiang Yang, et al. Temperature-insensitive displacement sensing using the chirp effect of fiber Bragg grating[J]. Chinese J Lasers, 2002, 29(11): 1015-1018.
黄永林, 童峥嵘, 项 阳, 等. 用光纤光栅的啁啾效应实现温度不敏感的位移传感[J]. 中国激光, 2002, 29(11): 1015-1018.

【5】Zhang Xuhui, Wang Lutang, Fang Nian. Study on power frequency electric-field measurements based on fiber Bragg grating sensing technology[J]. Laser & Optoelectronics Progress, 2016, 53(2): 020603.
张旭辉, 王陆唐, 方 捻. 基于光纤光栅传感技术的工频电场测量研究[J]. 激光与光电子学进展, 2016, 53(2): 020603.

【6】James S W, Dockney M L, Tatam R P. Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors[J]. Electronics Letters, 1996, 32(12): 1133-1134.

【7】Wang Pengzhi, Liu Chuntong, Li Hongcai, et al. A quasi distributed fiber Bragg grating sensing demodulation system design based on LabVIEW[J]. Laser & Optoelectronics Progress, 2016, 53(2): 022801.
王鹏致, 刘春桐, 李洪才, 等. 一种基于LabVIEW的准分布式光纤光栅传感解调系统设计[J]. 激光与光电子学进展, 2016, 53(2): 022801.

【8】Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter[J]. Optics Letters, 1993, 18(16): 1370-1372.

【9】Zhang jian, Liu bo, Kai Guiyun, et al. The application of gas absorption cell in the engineering fiber grating sensor system[J]. Photon Technology, 2006(2): 88-91.
张 键, 刘 波, 开桂云, 等. 实现高精度、高稳定性的工程化光纤光栅解调系统的研究[J]. 光子技术, 2006(2): 88-91.

【10】Yang Sha, Cai Haiwen, Huang Chong, et al. Stability analysis and improvement of an inteferometric interrogation for fiber Bragg grating sensors[J]. Chinese J Lasers, 2006, 33(11): 1537-1541.
阳 莎, 蔡海文, 黄 冲, 等. 光纤光栅传感器干涉型解调仪的稳定性分析和改进[J]. 中国激光, 2006, 33(11): 1537-1541.

【11】Liu Pengfei, Hao Fenghuan, He Shaoling, et al. Wavelength demodulation for distributed feedback active fiber grating sensor based on wavelength scanning[J]. Chinese J Lasers, 2016, 43(10): 1010002.
刘鹏飞, 郝凤欢, 何少灵, 等. 基于波长扫描的分布反馈有源光纤光栅传感器波长解调[J]. 中国激光, 2016, 43(10): 1010002.

【12】Mei Jiawei, Xiao Xiaosheng, Xu Mingrui, et al. Wavelength-swept fiber laser based on dispersion tuning and its application on the demodulation of fiber Bragg grating[J]. Acta Optica Sinica, 2012, 32(11): 1114003.
梅佳伟, 肖晓晟, 许明睿, 等. 基于色散调谐宽带扫频光纤激光器及其在光纤光栅解调中的应用[J]. 光学学报, 2012, 32(11): 1114003.

【13】Jiang Yi. Advanced optical fiber sensor technology[M]. Beijing: Science Press, 2009: 274-275.
江 毅. 高级光纤传感技术[M]. 北京: 科学出版社, 2009: 274-275.

【14】Zhang Weigang. Principle and application of fiber optics[M]. Beijing: Tsinghua University Press, 2009: 119-125.
张伟刚. 光纤光学原理及应用[M]. 北京: 清华大学出版社, 2009: 119-125.

【15】Zhang W, Webb D J, Peng G D. Enhancing the sensitivity of poly (methyl methacrylate) based optical fiber Bragg grating temperature sensors[J]. Optics Letters, 2015, 40(17): 4046-4049.

【16】Nan Qiuming. Study and application of fiber Bragg gratings strain sensor[D]. Wuhan: Wuhan University of Technology, 2003.
南秋明. 光纤光栅应变传感器的研制及应用[D]. 武汉: 武汉理工大学, 2003.

【17】Xu M G, Archambault J L, Reekie L, et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors[J]. Electronics Letters, 1994, 30(13): 1085-1087.

引用该论文

Su Hong,Wang Jian,Liu Lanlan,Wu Chongqing. Optical Fiber Grating Temperature and Axial Tension Sensing System Based on Swept Source[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040601

苏红,王健,刘岚岚,吴重庆. 基于扫频光源的光纤光栅温度和轴向拉力传感系统[J]. 激光与光电子学进展, 2017, 54(4): 040601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF