首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:41001--1)

基于显著性检测和改进投影字典对的盲道分割

Blind Road Segmentation Based on Saliency Detection and Improved Projective Dictionary Pair

王民   肖磊   杨放  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

现有盲道分割算法是通过提取颜色或纹理特征,采用聚类等方法来进行分割,易受盲道类型和外部环境影响。针对此问题,从盲道整体特征进行考虑,引入学习的方式,提出了一种基于显著性检测和改进投影字典对学习的盲道分割方法。该方法首先利用显著性检测,对盲道区域进行粗定位;然后以图像块作为处理单元,通过所提出的稳健字典对学习算法进行字典学习;接着将粗定位后的图像分块在该字典上进行稀疏重构;最后按照重构误差进行分类,以达到分割的目的。实验结果显示,在盲道分割中,该算法相对于现有算法,无论是准确性,还是普适性都表现更好。

Abstract

The current blind road segmentation algorithms are used to segment by extracting the color or texture feature, and by using the clustering method, which are vulnerable to blind road types and the external environment. To solve this problem, a learning approach is introduced, and a blind road segmentation method is proposed based on saliency detection and improved projection dictionary from the consideration of the global feature of blind road. Firstly, the saliency detection algorithms are used to roughly locate the blind road region. Then the image piece is used as the processing unit, and the dictionary is learned through the robust projective dictionary pair learning proposed. And the coarse image after location is divided into blocks to sparsely reconstruct on the dictionary. Finally, the rough-positioned images are reconstructed on the dictionary, and classified according to the reconstruction error to achieve the purpose of segmentation. Experimental results show that the proposed algorithm performs better than the existing algorithms in terms of accuracy and universality in blind road segmentation.

投稿润色
补充资料

中图分类号:TP391.41

DOI:10.3788/lop54.041001

所属栏目:图像处理

基金项目:住房和城乡建设部科学技术项目计划(2016-R2-045)、陕西省教育厅专项基金(2013JK1081)、陕西省科学技术研究发展计划项目(CXY1122(2))、陕西省自然科学基金青年基金(2013JQ8003)

收稿日期:2016-11-18

修改稿日期:2016-12-15

网络出版日期:--

作者单位    点击查看

王民:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
肖磊:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
杨放:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055

联系人作者:王民(wangmin1329@163.com)

备注:王民(1959-),男,本科,教授,硕士生导师,主要从事智能信息处理方面的研究。

【1】Yan Zhijie, Wang Jianming, Dou Ruzhen, et al. Sidewalk for the blind adaptive segmentation based on color clustering and line detection[J]. Journal of Tianjin Polytechnic University, 2010, 29(1): 80-84.
闫志杰, 汪剑鸣, 窦汝振, 等. 基于颜色聚类和直线检测的自适应盲道区域分割算法[J]. 天津工业大学学报, 2010, 29(1): 80-84.

【2】Zhou Yi, Zhao Qunfei. Blind road region detection and tracing algorithm based on color information[J]. Microcomputer Applications, 2010, 26(8): 47-50.
周 毅, 赵群飞. 基于颜色信息的盲道区域检测与跟随算法[J]. 微型电脑应用, 2010, 26(8): 47-50.

【3】Peng Yuqing, Xue Jie, Guo Yongfang. Blind road recognition algorithm based on color and texture information[J]. Journal of Computer Applications, 2014, 34(12): 3585-3588.
彭玉青, 薛 杰, 郭永芳. 基于颜色纹理信息的盲道识别算法[J]. 计算机应用, 2014, 34(12): 3585-3588.

【4】Wang Jianing. Hyperspectral image classification based on joint sparse representation and morphological feature extraction[J]. Laser & Optoelectronics Progress, 2016, 53(8): 082801.
王佳宁. 基于联合稀疏表示与形态特征提取的高光谱图像分类[J]. 激光与光电子学进展, 2016, 53(8): 082801.

【5】Yu Linqian, Qin Yali, Zhang Xiaoshuai. Denoising of strong noisy image via gradient reweighted non-local averaging over learned dictionaries[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111002.
余临倩, 覃亚丽, 张晓帅. 基于字典学习的梯度重权非局部平均的强噪声图像去噪[J]. 激光与光电子学进展, 2016, 53(11): 111002.

【6】Xiao L, Dai B, Wu T, et al. Unstructured road segmentation method based on dictionary learning and sparse representation[J]. Journal of Jilin University (Engineering and Technology), 2013, 43(S1): 384-388.

【7】Yin Wen, Li Yuanxiang, Zhou Zeming, et al. Remote sensing image fusion based on sparse representation[J]. Acta Optica Sinica, 2013, 33(4): 0428003.
尹 雯, 李元祥, 周则明, 等. 基于稀疏表示的遥感图像融合方法[J]. 光学学报, 2013, 33(4): 0428003.

【8】Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(2): 210-227.

【9】Yang M, Zhang L, Yang J, et al. Metaface learning for sparse representation based face recognition[C]. IEEE International Conference on Image Processing (ICIP), 2010, 119(5): 1601-1604.

【10】Zhang Q, Li B. Discriminative K-SVD for dictionary learning in face recognition[C]. Computer Vision and Pattern Recognition (CVPR), 2010, 119(5): 2691-2698.

【11】Jiang Z, Lin Z, Davis L S. Label consistent K-SVD: learning a discriminative dictionary for recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(11): 2651-2664.

【12】Yang M, Zhang D, Feng X, et al. Fisher discrimination dictionary learning for sparse representation[C]. IEEE International Conference on Computer Vision, 2011, 24(4): 543-550.

【13】Gu S, Zhang L, Zuo W, et al. Projective dictionary pair learning for pattern classification[J]. Advances in Neural Information Processing Systems, 2014, 1: 793-801.

【14】Yang C, Zhang L, Lu H, et al. Saliency detection via graph-based manifold ranking[C]. Computer Vision and Pattern Recognition (CVPR), 2013: 3166-3173.

【15】Partridge M, Jabri M. Robust principal component analysis[C]. Neural Networks for Signal Processing X, 2000: 289-298.

【16】Candés E J, Li X, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11.

引用该论文

Wang Min,Xiao Lei,Yang Fang. Blind Road Segmentation Based on Saliency Detection and Improved Projective Dictionary Pair[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041001

王民,肖磊,杨放. 基于显著性检测和改进投影字典对的盲道分割[J]. 激光与光电子学进展, 2017, 54(4): 041001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF