首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:41002--1)

基于Retinex理论和暗通道先验的夜间图像去雾算法

Nighttime Image Defogging Based on the Theory of Retinex and Dark Channel Prior

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

夜间图像去雾对夜间场景中的视频监控、目标识别等有重要应用价值。目前夜间图像去雾研究较少,且处理结果存在失真度高、细节模糊、稳健性差等缺点。针对以上情况,结合大气散射模型和夜间雾天图像成像特点,提出基于Retinex理论和暗通道先验的去雾算法。首先,根据Retinex理论求得夜间场景的有雾入射光图像和有雾反射光图像;其次,利用暗通道先验得到场景的无雾反射光图像;然后,分别根据夜间雾天图像和有雾反射光图像求得光源位置和景深,利用相机成像机理求得场景点与各光源的距离之和,进而求得无雾入射光图像;最后,利用Retinex理论复原得到夜间无雾图像。实验结果表明,本文算法不仅能彻底去雾,提高图像对比度,更能大幅度降低去雾过程中的颜色失真。

Abstract

Nighttime image defogging is critical for various applications, such as nighttime video surveillance, and target identification. The existing defogging algorithms for nighttime image have many shortcomings, such as high image distortion, fuzzy detail and poor robustness. In order to solve these problems, a new nighttime image defogging algorithm based on the theory of Retinex and dark channel prior is proposed combining with the characteristics of atmospheric scattering model and nighttime image of fog. Firstly, the incidence image affected by haze and the reflection image affected by haze are obtained based on the theory of Retinex. Then, the clear reflection image is obtained by the dark channel prior. After that, the position of the source and the depth of field are obtained according to the nighttime image of fog and the reflection image affected by haze. The sum of the distances between the spot and the source is obtained by using the camera imaging mechanism, and then the fog-free incident light image is obtained. Finally, the theory of Retinex is used to restore the nighttime clear image. Experimental results show that the proposed algorithm not only defogs completely and enhances the image contrast, but also reduces the color distortion greatly.

投稿润色
补充资料

中图分类号:TP751.1

DOI:10.3788/lop54.041002

所属栏目:图像处理

基金项目:国家自然科学基金(61372145,61472274,61201371)

收稿日期:2016-11-22

修改稿日期:2016-12-14

网络出版日期:--

作者单位    点击查看

杨爱萍:天津大学电子信息工程学院, 天津 300072
白煌煌:天津大学电子信息工程学院, 天津 300072

联系人作者:杨爱萍(yangaiping@tju.edu.cn)

备注:杨爱萍(1977-),女,博士,副教授,主要从事视觉计算、压缩感知理论和应用方面的研究。

【1】Wu Di, Zhu Qingsong. The latest research progress of image dehazing[J]. Acta Automatica Sinica, 2015, 41(2): 221-239.
吴 迪, 朱青松. 图像去雾的最新研究进展[J]. 自动化学报, 2015, 41(2): 221-239.

【2】Li Gun, Wu Jiefu, Lei Zhiyong. Research progress of image haze grade evaluation and dehazing technology[J]. Laser Journal, 2014, 35(9): 1-6.
李 滚, 吴劼夫, 雷志勇. 图像雾霾等级评价及去雾技术研究进展[J]. 激光杂志, 2014, 35(9): 1-6.

【3】Yu Jing, Xu Dongbin, Liao Qingmin. Image defogging:a survey[J]. Journal of Image and Graphics, 2011, 16(9): 1561-1576.
禹 晶, 徐东彬, 廖庆敏. 图像去雾技术研究进展[J]. 中国图象图形学报, 2011, 16(9): 1561-1576.

【4】He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2010: 1956-1963.

【5】He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

【6】Tan R T. Visibility in bad weather from a single image[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.

【7】Fattal R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1-9.

【8】Tarel J P, Hautière N. Fast visibility restoration from a single color or gray level image[C]. IEEE International Conference on Computer Vision, 2009: 2201-2208.

【9】Gao Yin, Yun Lijun, Shi Junsheng, et al. Enhancement dark channel algorithm of fog image based on the TV model[J]. Chinese J Lasers, 2015, 42(8): 0809001.
高 银, 云利军, 石俊生, 等. 基于TV模型的暗原色理论雾天图像复原算法[J]. 中国激光, 2015, 42(8): 0809001.

【10】Feng Weiyi, Chen Qian, He Weiji, et al. A defogging method based on hyperspectral unmixing[J]. Acta Optica Sinica, 2015, 35(1): 0110002.
冯维一, 陈 钱, 何伟基, 等. 基于高光谱图像混合像元分解技术的去雾方法[J]. 光学学报, 2015, 35(1): 0110002.

【11】Li Yamei, Ren Tingting. Image enhancement method based on car secondary safety system in smog days[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041003.
李雅梅, 任婷婷. 雾霾天车载辅助安全系统图像增强方法的研究[J]. 激光与光电子学进展, 2016, 53(4): 041003.

【12】Pei S C, Lee T Y. Nighttime haze removal using color transfer pre-processing and dark channel prior[C]. IEEE International Conference on Image Processing (ICIP), 2012: 957-960.

【13】Zhang J, Cao Y, Wang Z. Nighttime haze removal based on a new imaging model[C]. IEEE International Conference on Image Processing (ICIP), 2014: 4557-4561.

【14】Zhang J, Cao Y, Wang Z. Nighttime haze removal with illumination correction[J]. Computer Vision and Pattern Recognition, 2016.

【15】Li Y, Tan R T, Brown M S. Nighttime haze removal with glow and multiple light colors[C]. IEEE International Conference on Computer Vision, 2015: 226-234.

【16】Ancuti C, Ancuti C O, Vleeschouwer C D, et al. Night-time dehazing by fusion[C]. IEEE International Conference on Image Processing (ICIP), 2016: 2256-2260.

【17】Jobson D J, Rahman Z U, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.

引用该论文

Yang Aiping,Bai Huanghuang. Nighttime Image Defogging Based on the Theory of Retinex and Dark Channel Prior[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041002

杨爱萍,白煌煌. 基于Retinex理论和暗通道先验的夜间图像去雾算法[J]. 激光与光电子学进展, 2017, 54(4): 041002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF