首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:41901--1)

非周期极化铌酸锂晶体宽带倍频的理论研究

Theoretical Study on Broadband Frequency Doubling in Aperiodically Poled Lithium Niobate Crystal

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

宽带准相位匹配(QPM)在多波长和超短脉冲倍频等领域有着广泛应用。分析了铌酸锂晶体的准相位匹配和群速度匹配条件,利用遗传算法,对非周期极化铌酸锂(APPLN)晶体的结构进行优化设计,并提出了一种通过适当调整基波的位置和数量来优化非周期极化铌酸锂晶体倍频带宽的设计方法。研究表明,对于0型(e+e→e)准相位匹配,在群速度匹配点附近,周期极化铌酸锂(PPLN)晶体倍频带宽为167 nm,而非周期极化铌酸锂晶体最大倍频带宽可达440 nm,带宽增加了273 nm;I型(o+o→e)准相位匹配下,周期极化铌酸锂晶体在群速度匹配点附近的倍频带宽为59 nm,而非周期极化铌酸锂晶体最大倍频带宽可达153 nm,带宽增加了94 nm。

Abstract

Broadband quasi-phase-matching (QPM) is widely used in many fields, such as multi-wavelength and ultrashort pulse frequency doubling. The conditions of QPM and group velocity matching in lithium niobate crystal are analyzed. The optimized structure of aperiodically poled lithium niobate (APPLN) crystal is designed by genetic algorithm. Also, we present a method of optimizing the APPLN crystal second-harmonic generation (SHG) bandwidth by appropriately adjusting the position and quantity of the fundamental wavelengths. The results show that for QPM of type 0 (e+e→e) near the group velocity matching points, the SHG bandwidth in periodically poled lithium niobate (PPLN) crystal is about 167 nm, while the maximum SHG bandwidth in APPLN is up to 440 nm, and the bandwidth increases by 273 nm. For QPM of type I (o+o→e) near the group velocity matching points, the SHG bandwidth in PPLN is about 59 nm, while the maximum SHG bandwidth in APPLN is up to 153 nm, and the bandwidth increases by 94 nm.

投稿润色
补充资料

中图分类号:O437

DOI:10.3788/lop54.041901

所属栏目:非线性光学

基金项目:江苏省高校自然科学研究基金(14KJB140010)、南京邮电大学基金(NY213029)、江苏特聘教授资助项目(RK002STP14001)、江苏省“六大人才高峰”项目(2015-XCL-023)

收稿日期:2016-10-14

修改稿日期:2016-12-15

网络出版日期:--

作者单位    点击查看

蒋建:南京邮电大学光电工程学院先进光子技术实验室, 江苏 南京 210023
张建东:南京邮电大学光电工程学院先进光子技术实验室, 江苏 南京 210023
王凯:南京邮电大学光电工程学院先进光子技术实验室, 江苏 南京 210023
肖璇:南京邮电大学光电工程学院先进光子技术实验室, 江苏 南京 210023
张祖兴:南京邮电大学光电工程学院先进光子技术实验室, 江苏 南京 210023

联系人作者:蒋建(jiangjian@njupt.edu.cn)

备注:蒋建(1976-),男,博士,硕士生导师,主要从事非线性光学和光纤光学方面的研究。

【1】Chen B Q, Zhang C, Hu C Y, et al. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Phys Rev Lett, 2015, 115(8): 083902.

【2】Zhang L Y, Liu Y J, Huang J J, et al. Second harmonic generation of ultrashort pulses in refractive-index-linear-modulating nonlinear crystals[J]. J Opt Soc Am B, 2014, 31(5): 1202-1210.

【3】Wen Xin, Han Yashuai, He Jun, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 0414001.
温 馨, 韩亚帅, 何 军, 等. PPKTP晶体半整体谐振腔倍频的397.5 nm紫外激光输出[J]. 光学学报, 2016, 36(4): 0414001.

【4】Yang Sheng, Huang Xiaojun, Wu Zhaohui, et al. Broadband frequency doubling of Er-fiber mode-locked laser in BBO crystal[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121901.
杨 盛, 黄小军, 吴朝辉, 等. BBO晶体用于掺铒光纤锁模激光宽带倍频的研究[J]. 激光与光电子学进展, 2015, 52(12): 121901.

【5】Li Huijuan, Zhang Miao, Li Fengqin. High-power single-frequency 461 nm generation from an intracavity doubling of Ti: sapphire laser with LBO[J]. Chinese J Lasers, 2016, 43(3): 0302003.
李慧娟, 张 淼, 李凤琴. 高功率单频LBO腔内倍频461 nm钛宝石激光器[J]. 中国激光, 2016, 43(3): 0302003.

【6】Cardoso L, Pires H, Figueira G. Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion[J]. Opt Lett, 2009, 34(9): 1369-1371.

【7】Zhang Xin, Zhang Hengli, Mao Yefei, et al. Efficient methods of green output by second harmonic generation with short pulse broad-band laser[J]. Chinese J Lasers, 2016, 43(2): 0202003.
张 新, 张恒利, 毛叶飞, 等. 高效短脉冲宽带倍频绿光实现方法[J]. 中国激光, 2016, 43(2): 0202003.

【8】Kumar S C, Samanta G K, Devi K, et al. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation[J]. Opt Express, 2011, 19(12): 11152-11169.

【9】Deng Qinghua, Zhang Xiaomin, Ding Lei, et al. Stabilizing second harmonic generation output using cascaded crystals[J]. Acta Physica Sinica, 2011, 60(2): 024213.
邓青华, 张小民, 丁 磊, 等. 应用级联倍频方法提高倍频系统输出稳定性研究[J]. 物理学报, 2011, 60(2): 024213.

【10】Han Wei, Zheng Wanguo, Yang Yisheng, et al. Second-harmonic generation at retracing point of phase matching with pre-chirp compensation[J]. Acta Optica Sinica, 2007, 27(1): 133-137.
韩 伟, 郑万国, 杨义胜, 等. 啁啾补偿的折返点匹配二倍频[J]. 光学学报, 2007, 27(1): 133-137.

【11】Lee K J, Yoon C S, Rotermund F. Analysis of possible group-velocity-matched broadband second-harmonic generation in various periodically poled nonlinear crystals[J]. Jap J Appl Phys, 2005, 44(3): 1264-1268.

【12】Zhang J F, Chen Y P, Lu F, et al. Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses[J]. Appl Opt, 2007, 46(32): 7792-7796.

【13】Yu N E, Ro J H, Cha M, et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band[J]. Opt Lett, 2002, 27(12): 1046-1048.

【14】Dang W R, Chen Y P, Chen X F. Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice[J]. Photon Technol Lett, 2012, 24(5): 347-349.

【15】Bostani A, Ahlawat M, Tehranchi A, et al. Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic generation[J]. Opt Express, 2015, 23(4): 5183-5189.

【16】Kong Y, Chen X F, Xia Y X. Optimized second harmonic generation of femtosecond pulse by phase-blanking effect in aperiodically optical superlattice[J]. Chinese Phys Lett, 2008, 25(4): 1297-1300.

【17】Zhang Yuantao, Qu Qiuzhi, Qian Jun, et al. Thermal effect analysis of 1560 nm laser frequency doubling in a PPLN crystal[J]. Chinese J Lasers, 2015, 42(7): 0708002.
张远涛, 屈求智, 钱 军, 等. PPLN晶体1560 nm激光倍频过程的热效应分析[J]. 中国激光, 2015, 42(7): 0708002.

【18】Jiang J, Chang J H, Feng S J, et al. Mid-IR multiwavelength difference frequency generation based on fiber lasers[J]. Opt Express, 2010, 18(5): 4740-4747.

【19】Prakash O, Lim H-H, Kim B-J, et al. Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching[J]. Appl Phys B, 2008, 92(4): 535-541.

【20】Chen X F, Wu F, Zeng X L, et al. Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice[J]. Phys Rev A, 2004, 69(1): 013818.

【21】Lu M, Chen X F, Chen Y P, et al. Algorithm to design aperiodic optical superlattice for multiple quasi-phase matching[J]. Appl Opt, 2007, 46(19): 4138-4143.

【22】Edwards G J, Lawrence M. A temperature-dependent dispersion equation for congruently grown lithium niobate[J]. Opt Quant Elect, 1984, 16(4): 373-375.

【23】Lei Yingjie, Zhang Shanwen, Li Xuwu, et al. Matlab genetic algorithm toolbox and its application[M]. Xi′an: Xidian University Press, 2005: 1-105.
雷英杰, 张善文, 李续武, 等. Matlab遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005: 1-105.

引用该论文

Jiang Jian,Zhang Jiandong,Wang Kai,Xiao Xuan,Zhang Zuxing. Theoretical Study on Broadband Frequency Doubling in Aperiodically Poled Lithium Niobate Crystal[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041901

蒋建,张建东,王凯,肖璇,张祖兴. 非周期极化铌酸锂晶体宽带倍频的理论研究[J]. 激光与光电子学进展, 2017, 54(4): 041901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF