Collection Of theses on high power laser and plasma physics, 2016, 14 (1): 8352, Published Online: May. 26, 2017  

Suppression of FM-to-AM modulation by polarizing fiber front end for high-power lasers

Author Affiliations
1 National Laboratory on High Power Lasers and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
2 University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract
FM-to-AM modulation is an important effect in the front end of high-power lasers that influences the temporal profile. Various methods have been implemented in standard-fiber and polarization-maintaining (PM)-fiber front ends to suppress the FM-to-AM modulation. To analyze the modulation in the front end, a theoretical model is established and detailed simulations carried out that show that the polarizing (PZ) fiber, whose fast axis has a large loss, can successfully suppress the modulation. Moreover, the stability of the FM-to-AM modulation can be improved, which is important for the front end to obtain a stable output. To verify the model, a PZ fiber front end is constructed experimentally. The FM-to-AM modulation, without any compensation, is less than 4%, whereas that of the PM fiber front end with the same structure is nearly 20%. The stability of the FM-to-AM modulation depth is analyzed experimentally and the peak-to-peak and standard deviation (SD) are 2% and 0.38%, respectively, over 3 h. The experimental results agree with the simulation results and both prove that the PZ fiber front end can successfully suppress the FM-to-AM conversion. The PZ fiber front end is a promising alternative for improving the performance of the front end in high-power laser facilities.

ZHI QIAO, XIAOCHAO WANG, WEI FAN, XUECHUN LI, YOUEN JIANG, RAO LI, CANHONG HUANG, ZUNQI LIN. Suppression of FM-to-AM modulation by polarizing fiber front end for high-power lasers[J]. Collection Of theses on high power laser and plasma physics, 2016, 14(1): 8352.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!