激光与光电子学进展, 2017, 54 (6): 061403, 网络出版: 2017-06-08   

百千赫兹皮秒再生放大器的输出特性 下载: 764次

Output Characteristics of Few Hundreds kHz Picosecond Regenerative Amplifiers
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
高重复频率再生放大器的能量提取周期远小于激光增益介质上能级寿命,这会导致再生放大器输出一高一低两种能量的激光脉冲,即倍周期分叉现象。针对上述问题,从理论上分析高重复频率Nd∶YVO4再生放大器的输出脉冲稳定性与重复频率之间的关系,发现提高再生放大器重复频率可以避免出现倍周期分叉现象,并通过实验验证了当重复频率大于250 kHz时,Nd∶YVO4再生放大器没有出现倍周期分叉现象。此外,在吸收抽运功率为70 W时,实现了对单脉冲能量为1 nJ、重复频率为94 MHz的全固态Nd∶YVO4晶体半导体可饱和吸收镜锁模种子激光脉冲的再生放大,得到重复频率可调(250~500 kHz)的皮秒激光,其最大输出功率达到18 W,单脉冲能量为36 μJ。
Abstract
Considering that the energy extraction period becomes much smaller than the energy upper state lifetime of the laser gain media, the output laser of high repetition rate regenerative amplifiers contains two-different-energy pulses, which is generally described as the period doubling bifurcation phenomenon. In order to solve this problem, we study the relation between the output laser pulse stabilization of high repetition rate regenerative amplifiers and repetition rate theoretically, and find that the period doubling bifurcation phenomenon can be avoided by increasing the repetition rate of regenerative amplifiers. The experimental results show the period doubling bifurcation phenomenon is avoided when the repetition rate is more than 250 kHz. Furthermore, the regenerative amplification of 1 nJ pulse enenrgy is produced by all-solid-state Nd∶YVO4 crystal semiconductor saturable absorber mirror mode-locked picosecond laser with the repetition rate of 94 MHz. And when the absorbed pump laser is 70 W, we get the frequency tunable (250-500 kHz) picosecond laser. The maximum output average power is 18 W, and the single pulse energy is 36 μJ.

赵鹏, 陈檬, 禹伶洁, 龙明亮. 百千赫兹皮秒再生放大器的输出特性[J]. 激光与光电子学进展, 2017, 54(6): 061403. Zhao Peng, Chen Meng, Yu Lingjie, Long Mingliang. Output Characteristics of Few Hundreds kHz Picosecond Regenerative Amplifiers[J]. Laser & Optoelectronics Progress, 2017, 54(6): 061403.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!