Chinese Optics Letters, 2017, 15 (10): 102801, Published Online: Jul. 19, 2018   

Imaging process and signal-to-noise ratio improvement of enhanced self-heterodyne synthetic aperture imaging ladar Download: 806次

Author Affiliations
1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhanced self-heterodyne SAIL as well as in down-looking SAIL experiments, and the achieved imaging resolution of the enhanced self-heterodyne SAIL is analyzed. The signal-to-noise ratio (SNR) of the point target final image in the enhanced self-heterodyne SAIL is higher than that in the down-looking SAIL. The enhanced self-heterodyne SAIL can improve the SNR of the target image in far-distance imaging, with practicality.

Guo Zhang, Jianfeng Sun, Yu Zhou, Zhiyong Lu, Guangyuan Li, Guangyu Cai, Mengmeng Xu, Bo Zhang, Chenzhe Lao, Hongyu He, Liren Liu. Imaging process and signal-to-noise ratio improvement of enhanced self-heterodyne synthetic aperture imaging ladar[J]. Chinese Optics Letters, 2017, 15(10): 102801.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!