首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170605--1)

3 μm中红外稀土掺杂光纤激光器研究进展

Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了3 μm光纤激光器常用的光纤基质和稀土增益离子,分析了3 μm稀土掺杂光纤激光器的工作原理,并且从不同研究视角回顾了3 μm稀土掺杂光纤激光器的研究进展。其中,锁模中红外光纤激光器、小型化全光纤中红外激光器和3~4 μm更长波长的中红外光纤激光器是目前研究的主要趋势和热点。随着3 μm中红外光纤激光相关技术的迅速发展,结构更紧凑、性能更优异的3 μm光纤激光器不断涌现,必将大大推动其商业化和实用化的进程,更好地满足不同领域的应用需求。

Abstract

Herein, fiber hosts and rare earth gain ions commonly used in 3-μm fiber lasers are introduced, and the working principle of 3-μm rare earth ion-doped fiber lasers is briefly analyzed. Further, research progress on various 3-μm rare earth ion-doped fiber lasers is reviewed, revealing that mode-locked mid-infrared fiber lasers, miniaturized mid-infrared all-fiber lasers, and mid-infrared fiber lasers with long wavelengths of 3-4 μm are currently hot research topics. With the rapid development of 3-μm mid-infrared fiber lasers in recent years, 3-μm fiber lasers with a compact structure and excellent performance are emerging, which will greatly promote their commercialization and practical application in addition to fulfilling the requirements of different fields.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170605

所属栏目:功能光纤

基金项目:国家自然科学基金、福建省特殊支持‘双百计划’青年拔尖人才项目、厦门大学中央高校基本科研业务费;

收稿日期:2019-06-03

修改稿日期:2019-07-10

网络出版日期:2019-09-01

作者单位    点击查看

李维炜:厦门大学电子工程系, 福建 厦门 361005
张小金:厦门大学电子工程系, 福建 厦门 361005
王航:厦门大学电子工程系, 福建 厦门 361005
罗正钱:厦门大学电子工程系, 福建 厦门 361005

联系人作者:罗正钱(zqluo@xmu.edu.cn)

备注:国家自然科学基金、福建省特殊支持‘双百计划’青年拔尖人才项目、厦门大学中央高校基本科研业务费;

【1】Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics. 6(7), 423-431(2012).

【2】Guan X F, Wang J W, Zhang Y Z et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers. Photonics Research. 6(9), 830-836(2018).

【3】Bandyopadhyay N, Bai Y, Tsao S et al. Room temperature continuous wave operation of λ~3-3.2 μm quantum cascade lasers. Applied Physics Letters. 101(24), (2012).

【4】Fecko C J, Loparo J J and Tokmakoff A. Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier. Optics Communications. 241(4/5/6), 521-528(2004).

【5】Chen H, Li J F, Ou Z H et al. Progress of mid-infrared fiber lasers. Laser & Optoelectronics Progress. 48(11), (2011).
陈昊, 李剑峰, 欧中华 等. 中红外光纤激光器的研究进展. 激光与光电子学进展. 48(11), (2011).

【6】Snitzer E. Proposed fiber cavities for optical masers. Journal of Applied Physics. 32(1), 36-39(1961).

【7】Brierley M C and France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre. Electronics Letters. 24(15), 935-937(1988).

【8】Quimby R S. Minis-calco W J. Effect of upconversion on 2.7- μm laser action in Er 3+ . [C]∥Conference on Lasers and Electro-Optics, April 25-29, 1988, Anaheim, California, United States. Washington, D.C.: OSA. FE3, (1988).

【9】Allain J Y, Monerie M and Poignant H. Erbium-doped fluorozirconate single-mode fibre lasing at 2.71 μm. Electronics Letters. 25(1), 28-29(1989).

【10】Yanagita H, Masuda I, Yamashita T et al. Diode laser pumped Er 3+ fibre laser operation between 2.7-2.8 μm . Electronics Letters. 26(22), 1836-1838(1990).

【11】Allen R, Esterowitz L and Ginther R J. Diode-pumped single-mode fluorozirconate fiber laser from the 4I112→4I13/2 transition in erbium . Applied Physics Letters. 56(17), 1635-1637(1990).

【12】Allain J Y, Monerie M and Poignant H. Energy transfer in Er 3+/Pr 3+-doped fluoride glass fibres and application to lasing at 2.7 μm . Electronics Letters. 27(5), 445-447(1991).

【13】Frerichs C. All optical modulation of a 2.7 μm erbium-doped fluorozirconate fiber laser. [C]∥Advanced Solid State Lasers, February 1, 1993, New Orleans, Louisiana, United States. Washington, D.C.: OSA. ML2, (1993).

【14】Frerichs C. Efficient ER 3+-doped CW fluorozirconate fiber laser operating at 2.7 μm pumped at 980 nm . International Journal of Infrared and Millimeter Waves. 15(4), 635-649(1994).

【15】Frerichs C and Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm. Electronics Letters. 30(9), 706-707(1994).

【16】Schneider J. Continuous-wavelength lasing at 2.7 μm in Er 3+-doped fluoride fibers with low P 3+-codoping . [C]∥Conference on Lasers and Electro-Optics, May 8-13, 1994, Anaheim, California, United States. Washington, D.C.: OSA. CTuK81, (1994).

【17】Schneider J, Hauschild D, Frerichs C et al. Highly efficient Er 3+∶Pr 3+-codoped CW fluorozirconate fiber laser operating at 2.7 μm . International Journal of Infrared and Millimeter Waves. 15(11), 1907-1922(1994).

【18】Bed? S, Lüthy W and Weber H P. Limits of the output power in Er 3+∶ZBLAN singlemode fibre lasers . Electronics Letters. 31(3), 199-200(1995).

【19】Ghisler C, Pollnau M, Bunea C et al. Up-conversion cascade laser at 1.7 μm with simultaneous 2.7 μm lasing in erbium ZBLAN fibre. Electronics Letters. 31(5), 373-374(1995).

【20】Bed? S, Pollnau M, Lüthy W et al. Saturation of the 2.71 μm laser output in erbium-doped ZBLAN fibers. Optics Communications. 116(1/2/3), 81-86(1995).

【21】Pollnau M, Ghisler C, Bunea G et al. 150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser. Applied Physics Letters. 66(26), 3564-3566(1995).

【22】Schneider J. Mid-infrared fluoride fiber lasers in multiple cascade operation. IEEE Photonics Technology Letters. 7(4), 354-356(1995).

【23】Pollnau M, Spring R, Ghisler C et al. Efficiency of erbium 3-μm crystal and fiber lasers. IEEE Journal of Quantum Electronics. 32(4), 657-663(1996).

【24】Frerichs C and Unrau U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm. Optical Fiber Technology. 2(4), 358-366(1996).

【25】Pollnau M, Ghisler C, Lüthy W et al. Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm. Optics Letters. 22(9), 612-614(1997).

【26】Poppe E, Srinivasan B and Jain R K. 980 nm diode-pumped continuous wave mid-IR (2.7 μm) fibre laser. Electronics Letters. 34(24), 2331-2333(1998).

【27】Srinivasan B, Poppe E and Jain R K. 40 mW single-transverse-mode mid-IR (2.7 μm) CW output from a simple mirror-free 780-nm diode-pympable fiber laser. [C]∥Conference on Lasers and Electro-Optics, May 3-8, 1998, San Francisco, California, United States. Washington, D.C.: OSA. CWM2, (1998).

【28】Srinivasan B, Tafoya J and Jain R K. High-power “watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms. Optics Express. 4(12), 490-495(1999).

【29】Jackson S D, King T A and Pollnau M. Diode-pumped 1.7-W erbium 3-μm fiber laser. Optics Letters. 24(16), 1133-1135(1999).

【30】Sandrock T, Fischer D, Glas P et al. Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 μm. Optics Letters. 24(18), 1284-1286(1999).

【31】Dickinson B C, Golding P S, Jackson S D et al. Gain-switched 3-μm Er∶Pr-codoped fiber laser. [C]∥Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39 (IEEE Cat. No.00CH37088), May 7-12, 2000, San Francisco, CA, USA. New York: IEEE. CMP3, (2000).

【32】Jackson S D, King T A and Pollnau M. Efficient high power operation of erbium 3 μm fibre laser diode-pumped at 975 nm. Electronics Letters. 36(3), 223-224(2000).

【33】Libatique N J C, Tafoya J D, Feng S H et al. . A compact diode-pumped passively Q-switched mid-IR fiber laser. [C]∥Advanced Solid State Lasers, February 13, 2000, Davos, Switzerland. Washington, D.C.: OSA. MD2, (2000).

【34】Libatique N J C, Tafoya J D, Viswanathan N et al. . A “field-usable” diode-pumped ~120-nm wavelength-tunable CW mid-IR fiber laser. [C]∥Conference on Lasers and Electro-Optics, May 7-11, 2000, San Francisco, California United States. Washington, D.C.: OSA. CThV8, (2000).

【35】Dickinson B C, Golding P S, Pollnau M et al. Investigation of a 791-nm pulsed-pumped 2.7- μm Er-doped ZBLAN fibre laser. Optics Communications. 191, 315-321(2001).

【36】Pollnan M and Jackson S D. Erbium 3 μm fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics. 7(1), 30-40(2001).

【37】Linden K J. Fiber laser with 1.2-W CW output power at 2712 nm. IEEE Photonics Technology Letters. 16(2), 401-403(2004).

【38】Coleman D J, King T A, Ko D K et al. Q-switched operation of a 2.7 μm cladding-pumped Er 3+/Pr 3+ codoped ZBLAN fibre laser . Optics Communications. 236(4/5/6), 379-385(2004).

【39】Segi T, Shima K, Sakai T et al. 3-μm-band high output erbium-doped fiber lasers. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, May 16-21, 2004, San Francisco, California, United States. Washington, D.C.: OSA. CThZ5, (2004).

【40】Tafoya J, Pierce J W, Jain R K et al. Efficient and compact high-power mid-IR (~3 μm) lasers for surgical applications. Proceedings of SPIE. 5312, 218-222(2004).

【41】Zhu X S and Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser. Optics Letters. 32(1), 26-28(2007).

【42】Zhu X S and Jain R. Compact 2 W wavelength-tunable Er∶ZBLAN mid-infrared fiber laser. Optics Letters. 32(16), 2381-2383(2007).

【43】Zhu X S and Jain R. Watt-level 100-nm tunable 3-μm fiber laser. IEEE Photonics Technology Letters. 20(2), 156-158(2008).

【44】Zhu X S and Jain R. Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7-2.8 μm wavelength range. Optics Letters. 33(14), 1578-1580(2008).

【45】Jackson S D. High-power erbium cascade fibre laser. Electronics Letters. 45(16), 830-832(2009).

【46】Bernier M, Faucher D, Caron N et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser. Optics Express. 17(19), 16941-16946(2009).

【47】Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser. Optics Letters. 34(20), 3062-3064(2009).

【48】Faucher D, Bernier M, Caron N et al. Erbium-doped all-fiber laser at 2.94 μm. Optics Letters. 34(21), 3313-3315(2009).

【49】Tokita S, Hirokane M, Murakami M et al. Stable 10 W Er∶ZBLAN fiber laser operating at 2.71-2.88 μm. Optics Letters. 35(23), 3943-3945(2010).

【50】Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm. Optics Letters. 36(7), 1104-1106(2011).

【51】Gorjan M and Petkov?ek R. Marin ek M, et al. High-power pulsed diode-pumped Er∶ZBLAN fiber laser . Optics Letters. 36(10), 1923-1925(2011).

【52】Tokita S, Murakami M, Shimizu S et al. 12 W Q-switched Er∶ZBLAN fiber laser at 2.8 μm. Optics Letters. 36(15), 2812-2814(2011).

【53】Faucher D, Caron N, Bernier M et al. QCW all-fiber laser at 2.94 μm. [C]∥Lasers, Sources, and Related Photonic Devices, February 1-2, 2012, San Diego, California, United States. Washington, D.C.: OSA. FTh4A, (2012).

【54】Tsai T Y, Fang Y C, Tsao H X et al. Passively cascade-pulsed erbium ZBLAN all-fiber laser. Optics Express. 20(12), 12787-12792(2012).

【55】Wei C, Zhu X S, Norwood R A et al. Passively Q-switched 2.8- μm nanosecond fiber laser. IEEE Photonics Technology Letters. 24(19), 1741-1744(2012).

【56】Wei C, Zhu X S, Norwood R A et al. Passively continuous-wave mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm . Optics Letters. 37(18), 3849-3851(2012).

【57】Tokita S, Murakami M, Shimizu S et al. Graphene Q-switching of a 3 μm Er∶ZBLAN fiber laser. [C]∥Advanced Solid-State Lasers Congress, October 27-November 1, 2013, Paris France. Washington, D.C.: OSA. AF2A, (2013).

【58】Wei C, Zhu X S, Wang F et al. Graphene Q-switched 2.78 μm Er 3+-doped fluoride fiber laser . Optics Letters. 38(17), 3233-3236(2013).

【59】Haboucha A, Fortin V, Bernier M et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er 3+∶fluoride glass fiber laser . Optics Letters. 39(11), 3294-3297(2014).

【60】Zhu G W, Zhu X S, Norwood R A et al. Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8 μm. Journal of Lightwave Technology. 32(23), 4553-4557(2014).

【61】Shen Y L, Huang K, Zhou S Q et al. Gain-switched 2.8 μm Er 3+-doped double-clad ZBLAN fiber laser . Proceedings of SPIE. 9543, (2015).

【62】Bernier M, Michaud-Belleau V, Levasseur S et al. All-fiber DFB laser operating at 2.8 μm. Optics Letters. 40(1), 81-84(2015).

【63】Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared. Optica. 2(7), 623-626(2015).

【64】Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm. Optics Letters. 40(12), 2882-2885(2015).

【65】Hu T, Jackson S D and Hudson D D. Ultrafast pulses from a mid-infrared fiber laser. Optics Letters. 40(18), 4226-4228(2015).

【66】Hu T, Jackson S D and Hudson D D. A mid-infrared mode-locked fiber laser for frequency combs. [C]∥Nonlinear Optics, July 26-31, 2015, Kauai, Hawaii, United States. Washington, D.C.: OSA. NTh2A, (2015).

【67】Hu T, Jackson S D and Hudson D D. Femtosecond mode-locked pulses from a mid-infrared fiber laser. [C]∥2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, June 21-25, 2015, Munich, Germany. Washington, D.C.: OSA. CJ_5_2, (2015).

【68】Qin Z P, Xie G Q, Zhang H et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm. Optics Express. 23(19), 24713-24718(2015).

【69】Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm . Optics Letters. 40(21), 4855-4888(2015).

【70】Wan P, Yang L M, Bai S et al. High energy 3 μm ultrafast pulsed fiber laser. Optics Express. 23(7), 9527-9532(2015).

【71】Duval S, Olivier M, Fortin V et al. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm. Proceedings of SPIE. 9728, (2016).

【72】Duval S, Gauthier J C, Robichaud L R et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm. Optics Letters. 41(22), 5294-5297(2016).

【73】Shen Y L, Wang Y S, Chen H W et al. High average power continuous-wave mode-locked mid-infrared fiber laser. Chinese Journal of Lasers. 45(6), (2018).
沈炎龙, 王屹山, 谌鸿伟 等. 高平均功率连续锁模中红外光纤激光器. 中国激光. 45(6), (2018).

【74】Henderson-Sapir O, Jackson S D and Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Optics Letters. 41(7), 1676-1679(2016).

【75】Li J F, Wang L L, Luo H Y et al. High power cascaded erbium doped fluoride fiber laser at room temperature. IEEE Photonics Technology Letters. 28(6), 673-676(2016).

【76】Liu J, Huang B, Tang P H et al. Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er 3+∶ZBLAN fiber laser . [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D.C.: OSA. AW1K, (2016).

【77】Luo H Y, Li J, Xie J T et al. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system. Optics Express. 24(25), 29022-29032(2016).

【78】Qin Z P, Xie G Q, Zhao C J et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Optics Letters. 41(1), 56-59(2016).

【79】Shen Y L, Wang Y S, Luan K P et al. Watt-level passively Q-switched heavily Er 3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror . Scientific Reports. 6, (2016).

【80】Tang P H, Wu M, Wang Q K et al. 2.8- μm pulsed Er 3+∶ZBLAN fiber laser modulated by topological insulator . IEEE Photonics Technology Letters. 28(14), 1573-1576(2016).

【81】Zhang T, Feng G Y, Zhang H et al. Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe 2+∶ZnSe saturable absorber mirror . Optical Engineering. 55(8), (2016).

【82】Zhang T, Feng G Y, Zhang H et al. 2.78 μm passively Q-switched Er 3+-doped ZBLAN fiber laser based on PLD-Fe 2+∶ZnSe film . Laser Physics Letters. 13(7), (2016).

【83】Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm. IEEE Photonics Technology Letters. 28(1), 7-10(2016).

【84】Aydin Y O, Fortin V, Maes F et al. High efficiency cascade fiber laser at 2.8 μm. [C]∥2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, June 25-29, 2017, Munich, Germany. Washington, D.C.: OSA. CJ_9_6, (2017).

【85】Ayd?n Y O, Fortin V, Maes F et al. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica. 4(2), 235-238(2017).

【86】Paradis P, Fortin V, Aydin Y O et al. All-fiber gain-switched laser at 2.8 microns. [C]∥Laser Congress 2017 (ASSL, LAC), October 1-5, 2017, Nagoya, Aichi Japan. Washington, D.C.: OSA. ATh4A, (2017).

【87】Shen Y L, Wang Y S, Luan K P et al. Efficient wavelength-tunable gain-switching and gain-switched mode-locking operation of a heavily Er 3+-doped ZBLAN mid-infrared fiber laser . IEEE Photonics Journal. 9(4), (2017).

【88】Shen Y L, Zhou S Q, Chen H W et al. Output characteristics of Q-switched mid-infrared fiber laser with a mechanical chopper. Acta Optica Sinica. 36(1), (2016).
沈炎龙, 周松青, 谌鸿伟 等. 中红外2.8 μm光纤激光器机械调Q工作特性. 光学学报. 36(1), (2016).

【89】Wei C, Luo H Y, Shi H X et al. Widely wavelength tunable gain-switched Er 3+-doped ZBLAN fiber laser around 2.8 μm . Optics Express. 25(8), 8816-8827(2017).

【90】Wei C, Zhang H, Shi H et al. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range. IEEE Photonics Technology Letters. 29(11), 881-884(2017).

【91】Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers. Optics Letters. 43(18), 4542-4545(2018).

【92】Ayd?n Y O, Fortin V, Vallée R et al. High power splice-less fiber laser at 2825 nm. [C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, United States. Washington, D.C.: OSA. STh4K, (2018).

【93】Lai X, Li J F, Luo H Y et al. High power passively Q-switched Er 3+-doped ZBLAN fiber laser at 2.8 μm based on a semiconductor saturable absorber mirror . Laser Physics Letters. 15(8), (2018).

【94】Liu J, Wu M, Huang B et al. Widely wavelength-tunable mid-infrared fluoride fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics. 24(3), (2018).

【95】Ning S G, Feng G Y, Dai S Y et al. Mid-infrared Fe 2+∶ZnSe semiconductor saturable absorber mirror for passively Q-switched Er 3+-doped ZBLAN fiber laser . AIP Advances. 8(2), (2018).

【96】Ning S G, Feng G Y, Zhang H et al. Fabrication of Fe 2+∶ZnSe nanocrystals and application for a passively Q-switched fiber laser . Optical Materials Express. 8(4), 865-874(2018).

【97】Paradis P, Fortin V, Aydin Y O et al. 10 W-level gain-switched all-fiber laser at 2.8 μm. Optics Letters. 43(13), 3196-3199(2018).

【98】Qin Z P, Xie G Q, Ma J G et al. 2.8 μm all-fiber Q-switched and mode-locked lasers with black phosphorus. Photonics Research. 6(11), 1074-1078(2018).

【99】Xie G Q and Qin Z P. Mid-infrared ultrafast lasers based on two-dimension materials. [C]∥CLEO Pacific Rim Conference 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA. Th2G, (2018).

【100】Zhang W, Feng G Y, Dai S Y et al. Q-switched mid-infrared Er 3+∶ZBLAN fiber laser based on gold nanocrystals . Laser Physics. 28(9), (2018).

【101】Zhang W, Zhang H, Feng G Y et al. Gold nanobipyramids as a saturable absorber for passively Q-switched Er 3+∶ZBLAN fiber laser . Optics & Laser Technology. 111, 30-34(2019).

【102】Wetenkamp L. Efficient CW operation of a 2.9 μm Ho 3+-doped fluorozirconate fibre laser pumped at 640 nm . Electronics Letters. 26(13), 883-884(1990).

【103】Sumiyoshi T and Sekita H. Dual wavelength (3 μm and 2 μm) CW cascade oscillation of a holmium-doped double-clad fiber laser. [C]∥Conference Proceedings. LEOS ''''97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, November 10-13, 1997, San Francisco, CA, USA. New York: IEEE. 534-535(1997).

【104】Sumiyoshi T and Sekita H. Dual-wavelength continuous-wave cascade oscillation at 3 and 2 μm with a holmium-doped fluoride-glass fiber laser. Optics Letters. 23(23), 1837-1839(1998).

【105】Sumiyoshi T, Sekita H, Arai T et al. High-power continuous-wave 3- and 2- μm cascade Ho 3+∶ZBLAN fiber laser and its medical applications . IEEE Journal of Selected Topics in Quantum Electronics. 5(4), 936-943(1999).

【106】Naruse K, Arai T, Kawauchi S et al. Theoretical study of variable function (cutting/coagulating) laser surgical system using continuous-wave 3 μm, 2 μm cascade Ho 3+∶ZBLAN fiber laser . Proceedings of SPIE. 4257, 334-340(2001).

【107】Jackson S D. 210 mW 2.84 μm Ho 3+, Pr 3+-doped fluoride fibre laser . Electronics Letters. 39(10), 772-773(2003).

【108】Jackson S D. Singly Ho 3+-doped fluoride fibre laser operating at 2.92 μm . Electronics Letters. 40(22), 1400-1401(2004).

【109】Jackson S D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm. Optics Letters. 29(4), 334-336(2004).

【110】Qamar F Z, King T A, Jackson S D et al. Holmium, praseodymium-doped fluoride fiber laser operating near 2.87 μm and pumped with a Nd∶YAG laser. Journal of Lightwave Technology. 23(12), 4315-4320(2005).

【111】Jackson S D. Midinfrared holmium fiber lasers. IEEE Journal of Quantum Electronics. 42(2), 187-191(2006).

【112】Talavera D V and Mejía E B. Holmium-doped fluoride fiber laser at 2950 nm pumped at 1175 nm. Laser Physics. 16(3), 436-440(2006).

【113】Jackson S D, Bugge F and Erbert G. Directly diode-pumped holmium fiber lasers. Optics Letters. 32(17), 2496-2498(2007).

【114】Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm. Optics Letters. 34(15), 2327-2329(2009).

【115】Hudson D D, Anderson L, Magi E et al. Diode-pumped Ho 3+, Pr 3+-doped fluoride glass double clad fibre laser tuneable from 2.825 μm to 2.90 μm . [C]∥2011 IEEE Photonics Society Summer Topical Meeting Series, July 18-20, 2011, Montreal, QC, Canada. New York: IEEE. 87-88(2011).

【116】Hudson D D, Magi E, Gomes L et al. 1 W diode-pumped tunable Ho 3+, Pr 3+-doped fluoride glass fibre laser . Electronics Letters. 47(17), 985-986(2011).

【117】Li J F, Hudson D D and Jackson S D. High-power diode-pumped fiber laser operating at 3 μm. Optics Letters. 36(18), 3642-3644(2011).

【118】Hu T, Hudson D D and Jackson S D. Actively Q-switched 2.9 μm Ho 3+Pr 3+-doped fluoride fiber laser . Optics Letters. 37(11), 2145-2147(2012).

【119】Li J F, Hu T and Jackson S D. Dual wavelength Q-switched cascade laser. Optics Letters. 37(12), 2208-2210(2012).

【120】Li J F, Hu T and Jackson S D. Q-switched induced gain switching of a two-transition cascade laser. Optics Express. 20(12), 13123-13128(2012).

【121】Li J F, Hudson D D and Jackson S D. Tuned cascade laser. IEEE Photonics Technology Letters. 24(14), 1215-1217(2012).

【122】Li J F, Hudson D D, Liu Y et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror. Optics Letters. 37(18), 3747-3749(2012).

【123】Hu T, Jackson S D and Hudson D D. High peak power actively Q-switched Ho 3+, Pr 3+-co-doped fluoride fibre laser . Electronics Letters. 49(12), 766-767(2013).

【124】Hudson D D and Jackson S D. Fiber lasers open gateway to the mid-IR. SPIE Newsroom. (2013).

【125】Hudson D D, Williams R J, Withford M J et al. Single-frequency fiber laser operating at 2.9 μm. Optics Letters. 38(14), 2388-2390(2013).

【126】Li J F, Yang Y, Hudson D D et al. A tunable Q-switched Ho 3+-doped fluoride fiber laser . Laser Physics Letters. 10(4), (2013).

【127】Zhu G W, Zhu X S, Balakrishnan K et al. Fe 2+∶ZnSe and graphene Q-switched singly Ho 3+-doped ZBLAN fiber lasers at 3 μm . Optical Materials Express. 3(9), 1365-1377(2013).

【128】Hu T, Hudson D D and Jackson S D. Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class. Optics Letters. 39(7), 2133-2136(2014).

【129】Li J F, Luo H Y, He Y L et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser. Laser Physics Letters. 11(6), (2014).

【130】Crawford S, Hudson D D and Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss. IEEE Photonics Journal. 7(3), (2015).

【131】Li J F, Luo H Y, Wang L L et al. Mid-infrared passively switched pulsed dual wavelength Ho 3+-doped fluoride fiber laser at 3 μm and 2 μm . Scientific Reports. 5, (2015).

【132】Li J F, Luo H Y, Wang L L et al. Tunable Fe 2+∶ZnSe passively Q-switched Ho 3+-doped ZBLAN fiber laser around 3 μm . Optics Express. 23(17), 22362-22370(2015).

【133】Li J F, Luo H Y, Wang L L et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber. Optics Letters. 40(15), 3659-3662(2015).

【134】Antipov S, Hudson D D, Fuerbach A et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica. 3(12), 1373-1376(2016).

【135】Li J F, Luo H Y, Zhai B et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Scientific Reports. 6, (2016).

【136】Wei C, Luo H Y, Zhang H et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber. Laser Physics Letters. 13(10), (2016).

【137】Bharathan G, Woodward R I, Ams M et al. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers. Optics Express. 25(24), 30013-30019(2017).

【138】Hudson D D, Antipov S, Fuerbach A et al. Ultrafast fiber lasers in the 3 μm water window. [C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA. NTu3A, (2017).

【139】Hudson D D, Antipov S, Li L Z et al. Octave-spanning supercontinuum in the mid-IR with a 3 μm ultrafast fiber laser. [C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA. NTu3A, (2017).

【140】Hudson D D, Antipov S, Li L Z et al. Toward all-fiber supercontinuum spanning the mid-infrared. Optica. 4(10), 1163-1166(2017).

【141】Luo H Y, Li J F, Zhu C et al. Cascaded gain-switching in the mid-infrared region. Scientific Reports. 7, (2017).

【142】Wei C, Shi H X, Luo H Y et al. 34 nm-wavelength-tunable picosecond Ho 3+/Pr 3+-codoped ZBLAN fiber laser . Optics Express. 25(16), 19170-19178(2017).

【143】Woodward R I, Hudson D D, Fuerbach A et al. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser. Optics Letters. 42(23), 4893-4896(2017).

【144】Woodward R I, Hudson D D, Fuerbach A et al. Mid-infrared few-cycle pulse generation with a Ho∶ZBLAN fibre laser. [C]∥Australian and New Zealand Conference on Optics and Photonics.[S.l.: S.n.]. 115, (2017).

【145】Jia S J, Jia Z X, Yao C F et al. 2875 nm lasing from Ho 3+-doped fluoroindate glass fibers . IEEE Photonics Technology Letters. 30(4), 323-326(2018).

【146】Luo H Y, Li J F, Hai Y C et al. State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm. Optics Express. 26(1), 63-79(2018).

【147】Shi Y W, Li J F, Luo H Y et al. Low-threshold dual-waveband 3 μm and 2 μm pulse generation based on hybrid pumping. [C]∥CLEO Pacific Rim Conference 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA. F1A, (2018).

【148】Tian X L, Luo H Y, Wei R F et al. An ultrabroadband mid-infrared pulsed optical switch employing solution-processed bismuth oxyselenide. Advanced Materials. 30(31), (2018).

【149】Woodward R I, Hudson D D, Fuerbach A et al. Few-cycle pulse generation from a 3 μm fiber laser. [C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, United States. Washington, D.C.: OSA. STh4K, (2018).

【150】Luo H Y, Kang Z, Gao Y et al. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm. Optics Express. 27(4), 4886-4896(2019).

【151】Majewski M R, Woodward R I and Jackson S D. Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback. Optics Letters. 44(7), 1698-1701(2019).

【152】Shi Y W, Li J F, Luo H Y et al. Gain-switched dual-waveband Ho 3+-doped fluoride fiber laser based on hybrid pumping . IEEE Photonics Technology Letters. 31(1), 46-49(2019).

【153】Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Applied Physics Letters. 83(7), 1316-1318(2003).

【154】Tsang Y H. El-Taher A E, King T A, et al. Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd∶YAG laser operating at 1.3 μm. Optics Express. 14(2), 678-685(2006).

【155】Tsang Y H. El-Taher A E. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser. Laser Physics Letters. 8(11), 818-822(2011).

【156】Majewski M R and Jackson S D. Highly efficient mid-infrared dysprosium fiber laser. Optics Letters. 41(10), 2173-2176(2016).

【157】Majewski M R and Jackson S D. Tunable dysprosium laser. Optics Letters. 41(19), 4496-4498(2016).

【158】Majewski M R and Jackson S D. Efficient in-band pumped Dy∶ZBLAN mid-infrared fiber laser. [C]∥Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), September 5-8, 2016, Sydney, Australia. Washington, D.C.: OSA. AM2C, (2016).

【159】Majewski M R and Jackson S D. Recent progress in 3 micron class dysprosium-doped fluoride fiber lasers. Proceedings of SPIE. 10083, (2017).

【160】Majewski M R, Woodward R I and Jackson S D. Near infrared pumped full gain bandwidth tunable 3 micron dysprosium fiber laser. Proceedings of SPIE. 10512, (2018).

【161】Majewski M R, Woodward R I and Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm. Optics Letters. 43(5), 971-974(2018).

【162】Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency. Optics Letters. 43(7), 1471-1474(2018).

【163】Woodward R I, Majewski M R and Jackson S D. Mode-locked dysprosium fiber laser:picosecond pulse generation from 2.97 to 3.30 μm. APL Photonics. 3(11), (2018).

【164】Woodward R I, Majewski M R and Jackson S D. Electronically tunable mid-infrared mode-locked dysprosium fiber laser with over 330 nm tunability. Proceedings of SPIE. 10897, (2019).

【165】Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm. Optics Letters. 44(3), 491-494(2019).

【166】Wang Y C, Jobin F, Duval S et al. Ultrafast Dy 3+∶fluoride fiber laser beyond 3 μm . Optics Letters. 44(2), 395-398(2019).

【167】Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber. Optics Letters. 43(8), 1926-1929(2018).

【168】Bagdasarov K S, Zhekov V I, Lobachev V A et al. Steady-state emission from a Y3Al5O12∶Er 3+laser (λ =2.94 μ, T=300°K) . Soviet Journal of Quantum Electronics. 13(2), 262-263(1983).

【169】Zhekov V I, Lobachev V A, Murina T M et al. Efficient cross-relaxation laser emitting at λ=2.94 μ. Soviet Journal of Quantum Electronics. 13(9), 1235-1237(1983).

【170】Pollack S A, Chang D B and Moise N L. Continuous wave and Q-switched infrared erbium laser. Applied Physics Letters. 49(23), 1578-1580(1986).

【171】Auzel F, Meichenin D and Poignant H. Laser cross-section and quantum yield of Er 3+ at 2.7 μm in a ZrF4-based fluoride glass . Electronics Letters. 24(15), 909-910(1988).

【172】Johnson L F and Guggenheim H J. Laser emission at 3 μ from Dy 3+in BaY2F8. Applied Physics Letters. 23(2), 96-98(1973).

【173】Alcock I P, Tropper A C, Ferguson A I et al. Q-switched operation of a neodymium-doped monomode fibre laser. Electronics Letters. 22(2), 84-85(1986).

【174】Alcock I P, Ferguson A I, Hanna D C et al. Mode-locking of a neodymium-doped monomode fibre laser. Electronics Letters. 22(5), 268-269(1986).

【175】Wetenkamp L, Frerichs C, West G F et al. Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes. Journal of Non-Crystalline Solids. 140, 19-24(1992).

【176】Shi H X. The research on wavelength-tunable pulsed fiber lasers around 3 μm. Chengdu: University of Electronic Science and Technology of China. 20-22(2018).
史红霞. 3 μm波段可调谐脉冲光纤激光器基础研究. 成都: 电子科技大学. 20-22(2018).

【177】Kir''''Yanov A V and Barmenkov Y O. Self-Q-switched ytterbium-doped all-fiber laser. Laser Physics Letters. 3(10), 498-502(2006).

【178】Luo Z Q, Ruan Q J, Zhong M et al. Compact self-Q-switched green upconversion Er∶ZBLAN all-fiber laser operating at 543.4 nm. Optics Letters. 41(10), 2258-2261(2016).

【179】Li W W, Wang H J, Du T J et al. Compact self-Q-switched, tunable mid-infrared all-fiber pulsed laser. Optics Express. 26(26), 34497-34502(2018).

引用该论文

Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605

李维炜, 张小金, 王航, 罗正钱. 3 μm中红外稀土掺杂光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170605

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF