激光与光电子学进展, 2017, 54 (11): 110201, 网络出版: 2017-11-17   

玻色-爱因斯坦凝聚体穿越高斯光场的透镜效应 下载: 550次

Lensing Effect Induced by a Bose-Einstein Condensate Passing a Gaussian Laser Field
作者单位
华东师范大学物理与材料科学学院, 上海 200241
摘要
在已有实验的基础上,从理论上研究了一维超冷玻色-爱因斯坦凝聚原子团横向穿越高斯型红(蓝)失谐光场后产生的位置超前(滞后)与聚焦(散焦)效应,重点考虑了加速度场、外加高斯光场与原子的偶极作用势和原子间s-波散射碰撞作用势,并分析比较了在这三种机制的相互竞争且共同作用下,探测原子波包的位置和高度变化。加速度场仅影响波包位置,并不引起形变,原子间的强相互吸引作用可导致波包剧烈形变,甚至崩塌,而排斥作用会加快波包扩散。数值模拟结果与文献实验结果在红失谐光场下十分吻合;通过数值模拟还得到了蓝失谐光场下的理论预测结果。研究结果为今后实验研究光与原子相干操控提供了可行性方案。
Abstract
On the basis of recent experiment, the focusing and leading effect of an ultra-cold Bose-Einstein condensate (BEC) is theoretically investigated when it transversely passes through a red-detuned Gaussian field. Particular attentions are paid on the focusing (or defocusing) in shape and leading (or lagging) in position of the atoms, which are induced by a red-detuned (or blue-detuned) laser field. The time-dependent motion of BEC atoms and its final status are presented under the influences of the acceleration, the dipolar interaction between atom and optical field, as well as the s-wave scattering collisions of individual atoms. In addition, the acceleration only influences position of the atoms; an attractive or repulsive s-wave interaction can bring on a strong deformation to the atoms, making them collapse or diffusion in essence. Compared to the previous experiments, the findings are well consistent in the regime of a red-detuned laser field, moreover, an extension to the blue-detuned field is predicted. The results may provide more feasible ways for studying coherent atom-light manipulations in the field of ultra-cold atoms and molecules in the future.

温歆, 张钰伊, 钱静. 玻色-爱因斯坦凝聚体穿越高斯光场的透镜效应[J]. 激光与光电子学进展, 2017, 54(11): 110201. Wen Xin, Zhang Yuyi, Qian Jing. Lensing Effect Induced by a Bose-Einstein Condensate Passing a Gaussian Laser Field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!