首页 > 论文 > Photonics Research > 6卷 > 1期(pp:24--1)

Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Dielectric metasurfaces have achieved great success in realizing high-efficiency wavefront control in the optical and infrared ranges. Here, we experimentally demonstrate several efficient, polarization-independent, all-silicon dielectric metasurfaces in the terahertz regime. The metasurfaces are composed of cylindrical silicon pillars on a silicon substrate, which can be easily fabricated using etching technology for semiconductors. By locally tailoring the diameter of the pillars, full control over abrupt phase changes can be achieved. To show the controlling ability of the metasurfaces, an anomalous deflector, three Bessel beam generators, and three vortex beam generators are fabricated and characterized. We also show that the proposed metasurfaces can be easily combined to form composite devices with extended functionalities. The proposed controlling method has promising applications in developing low-loss, ultra-compact spatial terahertz modulation devices.

投稿润色
补充资料

DOI:10.1364/prj.6.000024

基金项目:National Basic Research Program of China (2014CB339800); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61420106006, 61422509, 61605143, 61622505, 61675145, 61735012); Program for Changjiang Scholars and Innovative Research Team in University (IRT13033); Major National Development Project of Scientific Instruments and Equipment (2011YQ150021); Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ17203).

收稿日期:2017-08-03

录用日期:2017-10-17

网络出版日期:2017-11-13

作者单位    点击查看

Huifang Zhang:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Xueqian Zhang:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Quan Xu:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Qiu Wang:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Yuehong Xu:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Minggui Wei:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Yanfeng Li:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Jianqiang Gu:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Zhen Tian:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Chunmei Ouyang:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
Xixiang Zhang:Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Cong Hu:Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
Jiaguang Han:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, Chinae-mail: jiaghan@tju.edu.cn
Weili Zhang:Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, ChinaSchool of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USAe-mail: weili.zhang@okstate.edu

联系人作者:Xueqian Zhang(alearn1988@tju.edu.cn)

【1】A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339 , 1232009 (2013).

【2】N. Yu, and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13 , 139–150 (2014).

【3】N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334 , 333–337 (2011).

【4】F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12 , 4932–4936 (2012).

【5】X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3 , 1198 (2012).

【6】N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-Wave plate based on plasmonic metasurfaces,” Nano Lett. 12 , 6328–6333 (2012).

【7】X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2 , e72 (2013).

【8】X. J. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4 , 2807 (2013).

【9】L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4 , 2808 (2013).

【10】X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25 , 4567–4572 (2013).

【11】L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26 , 5031–5036 (2014).

【12】D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1 , 186–191 (2013).

【13】Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3 , 779–785 (2015).

【14】J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21 , 20230–20239 (2013).

【15】Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6 , 32867 (2016).

【16】B. Wang, B. Quan, J. He, Z. Xie, X. Wang, J. Li, Q. Kan, and Y. Zhang, “Wavelength de-multiplexing metasurface hologram,” Sci. Rep. 6 , 35657 (2016).

【17】X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27 , 7123–7129 (2015).

【18】F. Monticone, N. M. Estakhri, and A. Alu, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110 , 203903 (2013).

【19】A. Arbabi, and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” Sci. Rep. 7 , 43722 (2017).

【20】S. Sun, K. Yang, C. Wang, T. Juan, W. Chen, C. Liao, Q. He, S. Xiao, W. T. Kung, G. Guo, L. Zhou, and D. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12 , 6223–6229 (2012).

【21】A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3 , 2155 (2013).

【22】C. Pfeiffer, and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110 , 197401 (2013).

【23】N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340 , 1304–1307 (2013).

【24】C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14 , 2491–2497 (2014).

【25】G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10 , 308–312 (2015).

【26】S. Liu, A. Noor, L. Du, L. Zhang, Q. Xu, K. Luan, T. Wang, Z. Tian, W. Tang, J. Han, W. Zhang, X. Zhou, Q. Cheng, and T. Cui, “Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photon. 3 , 1968–1977 (2016).

【27】S. Liu, Q. Cheng, Q. Xu, T. Wang, L. Du, K. Luan, Y. Xu, D. Bao, X. Fu, J. Han, W. Zhang, and T. Cui, “Free-standing metasurfaces for high-efficiency transmitarrays for controlling terahertz waves,” Adv. Opt. Mater. 4 , 384–390 (2016).

【28】S. Jahani, and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11 , 23–36 (2016).

【29】P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4 , 139–152 (2017).

【30】S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Tech. Lett. 26 , 1375–1378 (2014).

【31】D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345 , 298–302 (2014).

【32】M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3 , 813–820 (2015).

【33】M. I. Shalaev, J. B. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15 , 6261–6266 (2015).

【34】Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9 , 412–418 (2015).

【35】M. Khorasaninejad, and F. Capasso, “Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters,” Nano Lett. 15 , 6709–6715 (2015).

【36】A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “A subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6 , 7069 (2015).

【37】A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10 , 937–943 (2015).

【38】M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16 , 7229–7234 (2016).

【39】Q.-T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Polarization-independent and high-efficiency dielectric metasurfaces for visible light,” Opt. Express 24 , 16309–16319 (2016).

【40】D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photon. 3 , 1019–1026 (2016).

【41】Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photon. 3 , 1010–1018 (2016).

【42】J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58 , 1499–1501 (1987).

【43】Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151 , 207–211 (1998).

【44】E. Pastrana, “Bessel beams beyond the limit,” Nat. Methods 10 , 102–103 (2013).

【45】D. G. Grier, “A revolution in optical manipulation,” Nature 424 , 810–816 (2003).

【46】J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6 , 488–496 (2012).

【47】A. E. Willner, J. Wang, and H. Huang, “A different angle on light communications,” Science 337 , 655–656 (2012).

【48】L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2 , 900–903 (2015).

【49】J. Arlt, and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177 , 297–301 (2000).

【50】M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112 , 321–327 (1994).

【51】N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17 , 221–223 (1992).

【52】E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3 , e167 (2014).

【53】F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105 , 101905 (2014).

【54】W. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, A. Zaidi, and F. Capasso, “Generation of wavelength-independent subwavelength Bessel beams using metasurfaces,” Light Sci. Appl. 6 , e16259 (2017).

【55】L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96 , 163905 (2006).

【56】L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45 , 8185–8189 (1992).

引用该论文

Huifang Zhang, Xueqian Zhang, Quan Xu, Qiu Wang, Yuehong Xu, Minggui Wei, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xixiang Zhang, Cong Hu, Jiaguang Han, and Weili Zhang, "Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime," Photonics Research 6(1), 24 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF