首页 > 论文 > Photonics Research > 6卷 > 1期(pp:30--1)

Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We investigate the localized surface plasmon (LSP) effect by Al nanorings on the AlGaN/GaN multiple quantum well (MQW) structure emitting at 365 nm. For this experiment, first, the size of Al nanorings is optimized to maximize the energy transfer (or coupling) between the LSP and MQW using the silica nanospheres. Then, the Al nanorings with an outer diameter of 385 nm, which exhibit a strong absorption peak in the near-ultraviolet region, are applied to the top surface of the AlGaN/GaN MQW. The photoluminescence (PL) intensity of the MQW structure with Al nanorings increased by 227% at 365 nm compared to that without Al nanorings. This improvement is mainly attributed to an enhanced radiative recombination rate in the MQWs through the energy-matched LSPs by the temperature-dependent PL and time-resolved PL analyses. The radiative lifetime was about two times shorter than that of the structure without Al nanorings at room temperature. In addition, the measured PL efficiency at room temperature of the structure with Al nanorings was 33%, while that of the structure without Al nanorings was 19%, implying that LSP-QW coupling together with the nanoring array pattern itself played important roles in the enhancement.

投稿润色
补充资料

DOI:10.1364/prj.6.000030

基金项目:National Research Foundation of Korea (NRF)10.13039/501100003725 (2016R1A3B 1908249).

收稿日期:2017-09-12

录用日期:2017-11-11

网络出版日期:2017-11-11

作者单位    点击查看

Kyung Rock Son:School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea
Byeong Ryong Lee:School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea
Min Ho Jang:Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
Hyun Chul Park:Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
Yong Hoon Cho:Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
Tae Geun Kim:School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea

联系人作者:Tae Geun Kim(tgkim1@korea.ac.kr)

【1】P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75 , 461–468 (2017).

【2】H.-Y. Lin, C.-W. Sher, D.-H. Hsieh, X.-Y. Chen, H.-M. P. Chen, T.-M. Chen, K.-M. Lau, C.-H. Chen, C.-C. Lin, and H.-C. Kuo, “Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diodes display by a lithographic-fabricated photoresist mold,” Photon. Res. 5 , 411–416 (2017).

【3】K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review,” Water Res. 94 , 341–349 (2016).

【4】Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29 , 084004 (2014).

【5】M. Krames, and N. Grandjean, “Light-emitting diodes technology and applications: introduction,” Photon. Res. 5 , LED1–LED2 (2017).

【6】J. S. Speck, and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273–274 , 24–32 (1999).

【7】T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37 , L398–L400 (1998).

【8】N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86 , 3714–3720 (1999).

【9】A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106 , 142107 (2015).

【10】F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350??nm via step quantum well structure design,” J. Phys. D 50 , 245101 (2017).

【11】E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425 , 389–392 (2015).

【12】T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275??nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10 , 031002 (2017).

【13】K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3 , 601–605 (2004).

【14】M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20 , 1253–1257 (2008).

【15】S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26 , 385204 (2015).

【16】K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4 , 4380 (2014).

【17】J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2 , 451–458 (2014).

【18】C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7 , 2358 (2017).

【19】S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265?nm deep-ultraviolet light-emitting diodes with over 90??mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106 , 131104 (2015).

【20】S.-I. Inoue, N. Tamari, and M. Taniguchi, “150??mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265??nm,” Appl. Phys. Lett. 110 , 141106 (2017).

【21】Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51 , 3300109 (2015).

【22】E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302 , 419–422 (2003).

【23】P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3 , 488–492 (2009).

【24】J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117 , 19606–19615 (2013).

【25】C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105 , 5599–5611 (2001).

【26】Z. Bai, G. Tao, Y. Li, J. He, K. Wang, G. Wang, X. Jiang, J. Wang, W. Blau, and L. Zhang, “Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays,” Photon. Res. 5 , 280–286 (2017).

【27】E. Prodan, and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352 , 140–146 (2002).

【28】S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79 , 4319–4321 (2001).

【29】Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73 , 1370–1372 (1998).

【30】W. F. Yang, Y. N. Xie, R. Y. Liao, J. Sun, Z. Y. Wu, L. M. Wong, S. J. Wang, C. F. Wang, A. Y. S. Lee, and H. Gong, “Enhancement of bandgap emission of Pt-capped MgZnO films: important role of light extraction versus exciton-plasmon coupling,” Opt. Express 20 , 14556–14563 (2012).

引用该论文

Kyung Rock Son, Byeong Ryong Lee, Min Ho Jang, Hyun Chul Park, Yong Hoon Cho, and Tae Geun Kim, "Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns," Photonics Research 6(1), 30 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF