首页 > 论文 > Photonics Research > 6卷 > 1期(pp:37--1)

Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Hybrid plasmonic waveguides leveraging the coupling between dielectric modes and plasmon polaritons have emerged as a major focus of research attention during the past decade. A feasible way for constructing practical hybrid plasmonic structures is to integrate metallic configurations with silicon-on-insulator waveguiding platforms. Here we report a transformative high-performance silicon-based hybrid plasmonic waveguide that consists of a silicon nano-rib loaded with a metallic nanowire. A deep-subwavelength mode area (λ2/4.5×105?λ2/7×103), in conjunction with a reasonable propagation distance (2.2–60.2 μm), is achievable at a telecommunication wavelength of 1.55 μm. Such a nano-rib-based waveguide outperforms its conventional hybrid and plasmonic waveguiding counterparts, demonstrating tighter optical confinement for similar propagation distances and a significantly enhanced figure of merit. The guiding properties of the fundamental mode are also quite robust against possible fabrication imperfections. Due to the strong confinement capability, our proposed hybrid configuration features ultralow waveguide cross talk and enables submicron bends with moderate attenuation as well. The outstanding optical performance renders such waveguides as promising building blocks for ultracompact passive and active silicon-based integrated photonic components.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000037

基金项目:Penn State MRSEC, Center for Nanoscale Science (NSF DMR-1420620).

收稿日期:2017-08-31

录用日期:2017-11-01

网络出版日期:2017-11-14

作者单位    点击查看

Yusheng Bian:Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Qiang Ren:Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USASchool of Electronics and Information Engineering, Beihang University, Beijing 100191, China
Lei Kang:Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Taiwei Yue:Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Pingjuan L. Werner:Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Douglas H. Werner:Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

联系人作者:Douglas H. Werner(dhw@psu.edu)

【1】A. F. Koenderink, A. Alu, and A. Polman, “Nanophotonics: shrinking light-based technology,” Science 348 , 516–521 (2015).

【2】R. Kirchain, and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1 , 303–305 (2007).

【3】N. Kinsey, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials,” J. Opt. Soc. Am. B 32 , 121–142 (2015).

【4】Z. H. Han, and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76 , 016402 (2013).

【5】C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4 , 2305 (2013).

【6】R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2 , 496–500 (2008).

【7】R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461 , 629–632 (2009).

【8】V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2 , 331 (2011).

【9】M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8 , 394–408 (2014).

【10】D. X. Dai, and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17 , 16646–16653 (2009).

【11】X. W. Guan, H. Wu, and D. X. Dai, “Silicon hybrid nanoplasmonics for ultra-dense photonic integration,” Front. Optoelectron. 7 , 300–319 (2014).

【12】M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18 , 11728–11736 (2010).

【13】H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96 , 221103 (2010).

【14】X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11 , 321–328 (2011).

【15】V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1 , 17–22 (2012).

【16】X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37 , 4814–4816 (2012).

【17】X. W. Guan, H. Wu, Y. C. Shi, L. Wosinski, and D. X. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38 , 3005–3008 (2013).

【18】R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9 , 600–604 (2014).

【19】Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17 , 21320–21325 (2009).

【20】I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97 , 141106 (2010).

【21】M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18 , 12971–12979 (2010).

【22】S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19 , 8888–8902 (2011).

【23】J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Tech. Lett. 23 , 1481–1483 (2011).

【24】L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30 , 163–168 (2012).

【25】C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18 , 1661–1668 (2012).

【26】Y. S. Bian, and Q. H. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21 , 23907–23920 (2013).

【27】Y. Q. Ma, G. Farrell, Y. Semenova, and Q. Wu, “A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement,” J. Lightwave Technol. 33 , 3827–3835 (2015).

【28】C. C. Gui, and J. Wang, “Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area,” Sci. Rep. 5 , 11457 (2015).

【29】Y. S. Bian, and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photon. Rev. 8 , 549–561 (2014).

【30】Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15 , 055011 (2013).

【31】M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23 , 4222–4238 (2005).

【32】R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Quantum Electron. 12 , 1678–1687 (2006).

【33】H. Wei, and H. X. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1 , 155–169 (2012).

【34】X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7 , 855–881 (2013).

【35】J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73 , 035407 (2006).

【36】R. Buckley, and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15 , 12174–12182 (2007).

【37】S. P. Zhang, and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6 , 8128–8135 (2012).

【38】T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75 , 245405 (2007).

【39】S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440 , 508–511 (2006).

【40】E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100 , 023901 (2008).

【41】L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13 , 6645–6650 (2005).

【42】G. Veronis, and S. H. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25 , 2511–2521 (2007).

【43】Y. S. Bian, and Q. H. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7 , 4415–4422 (2015).

【44】J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15 , 4474–4484 (2007).

【45】G. Veronis, and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16 , 2129–2140 (2008).

【46】W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11 , 963–983 (1994).

【47】H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95 , 257403 (2005).

【48】A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6 , 1822–1826 (2006).

引用该论文

Yusheng Bian, Qiang Ren, Lei Kang, Taiwei Yue, Pingjuan L. Werner, and Douglas H. Werner, "Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides," Photonics Research 6(1), 37 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF