首页 > 论文 > Photonics Research > 6卷 > 1期(pp:47--1)

On-chip polarization splitter based on a multimode plasmonic waveguide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The miniaturization of polarization beam splitters (PBSs) is vital for ultradense chip-scale photonic integrated circuits. However, the small PBSs based on complex hybrid plasmonic structures exhibit large fabrication difficulties or high insertion losses. Here, by designing a bending multimode plasmonic waveguide, an ultrabroadband on-chip plasmonic PBS with low insertion losses is numerically and experimentally realized. The multimode plasmonic waveguide, consisting of a metal strip with a V-shaped groove on the metal surface, supports the symmetric and antisymmetric surface plasmon polariton (SPP) waveguide modes in nature. Due to the different field confinements of the two SPP waveguide modes, which result in different bending losses, the two incident SPP waveguide modes of orthogonal polarization states are efficiently split in the bending multimode plasmonic waveguide. The numerical simulations show that the operation bandwidth of the proposed PBS is as large as 430 nm because there is no resonance or interference effect in the splitting process. Compared with the complex hybrid plasmonic structure, the simple bending multimode plasmonic waveguide is much easier to fabricate. In the experiment, a broadband (Δλ≈120 nm) and low-insertion-loss (<3 dB with a minimum insertion loss of 0.7 dB) PBS is demonstrated by using the strongly confined waveguide modes as the incident sources in the bending multimode plasmonic waveguide.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000047

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11674014, 61475005, 11527901, 11134001); National Basic Research Program of China (2016YFA0203500, 2013CB328704).

收稿日期:2017-09-22

录用日期:2017-11-19

网络出版日期:2017-11-28

作者单位    点击查看

Fengyuan Gan:State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, ChinaCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Chengwei Sun:State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China
Hongyun Li:State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China
Qihuang Gong:State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, ChinaCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Jianjun Chen:State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, ChinaCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

联系人作者:Jianjun Chen(jjchern@pku.edu.cn)

【1】T. Barwicz, M. R. Watts, M. A. Popovi?, P. T. Rakich, L. Socci, F. X. K?rtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1 , 57–60 (2007).

【2】D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1 , e1–e12 (2012).

【3】D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7 , 303–328 (2013).

【4】A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vu?kovi?, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9 , 374–377 (2015).

【5】B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4??μm2 footprint,” Nat. Photonics 9 , 378–382 (2015).

【6】S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98 , 151101 (2011).

【7】D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36 , 2590–2592 (2011).

【8】B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21 , 432–434 (2009).

【9】A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett. 36 , 4047–4049 (2011).

【10】Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39 , 965–968 (2014).

【11】M. Watts, H. Haus, and E. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30 , 967–969 (2005).

【12】L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19 , 1286–1288 (2007).

【13】D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical Mach–Zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29 , 1808–1817 (2011).

【14】X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89 , 171115 (2006).

【15】D. K. Gramotnev, and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4 , 83–91 (2010).

【16】W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11 , 1603–1608 (2011).

【17】M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5 , 5442–5449 (2013).

【18】C.-L. Zou, F.-W. Sun, C.-H. Dong, X.-F. Ren, J.-M. Cui, X.-D. Chen, Z.-F. Han, and G.-C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett. 36 , 3630–3632 (2011).

【19】Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3 , 2206 (2013).

【20】F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37 , 3372–3374 (2012).

【21】X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39 , 259–262 (2014).

【22】L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113 , 199–203 (2013).

【23】J. Chee, S. Zhu, and G. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20 , 25345–25355 (2012).

【24】K. W. Chang, and C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide,” Sci. Rep. 6 , 19609 (2016).

【25】J. Chen, C. Sun, H. Li, and Q. Gong, “Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit,” Appl. Phys. Lett. 104 , 231111 (2014).

【26】C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108 , 101106 (2016).

【27】P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6 , 4370–4379 (1972).

【28】S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95 , 046802 (2005).

【29】S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440 , 508–511 (2006).

【30】V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9 , 1278–1282 (2009).

【31】E. Moreno, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31 , 3447–3449 (2006).

【32】F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2 , 1600248 (2017).

【33】C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27 , 065501 (2016).

【34】D. Dai, and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19 , 10940–10949 (2011).

【35】C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111 , 101105 (2017).

【36】Y. H. Ding, H. Y. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38 , 1227–1229 (2013).

【37】D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143 , 773–819 (2013).

【38】Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21 , 242–244 (2009).

引用该论文

Fengyuan Gan, Chengwei Sun, Hongyun Li, Qihuang Gong, and Jianjun Chen, "On-chip polarization splitter based on a multimode plasmonic waveguide," Photonics Research 6(1), 47 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF